Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genome Biol ; 24(1): 158, 2023 07 05.
Article in English | MEDLINE | ID: mdl-37408019

ABSTRACT

Genome browsers facilitate integrated analysis of multiple genomics datasets yet visualize only a few regions at a time and lack statistical functions for extracting meaningful information. We present HiCognition, a visual exploration and machine-learning tool based on a new genomic region set concept, enabling detection of patterns and associations between 3D chromosome conformation and collections of 1D genomics profiles of any type. By revealing how transcription and cohesion subunit isoforms contribute to chromosome conformation, we showcase how the flexible user interface and machine learning tools of HiCognition help to understand the relationship between the structure and function of the genome.


Subject(s)
Genome, Human , Genomics , Software , Humans , Genomics/methods , Chromosomes, Human , Machine Learning
2.
Nat Protoc ; 17(6): 1486-1517, 2022 06.
Article in English | MEDLINE | ID: mdl-35478248

ABSTRACT

Chromosome conformation capture (Hi-C) techniques map the 3D organization of entire genomes. How sister chromatids fold in replicated chromosomes, however, cannot be determined with conventional Hi-C because of the identical DNA sequences of sister chromatids. Here, we present a protocol for sister chromatid-sensitive Hi-C (scsHi-C) that enables the distinction of DNA contacts within individual sister chromatids (cis sister contacts) from those between sister chromatids (trans sister contacts), thereby allowing investigation of the organization of replicated genomes. scsHi-C is based on live-cell labeling of nascent DNA by the synthetic nucleoside 4-thio-thymidine (4sT), which incorporates into a distinct DNA strand on each sister chromatid because of semi-conservative DNA replication. After purification of genomic DNA and in situ Hi-C library preparation, 4sT is chemically converted into 5-methyl-cytosine in the presence of OsO4/NH4Cl to introduce T-to-C signature point mutations on 4sT-labeled DNA. The Hi-C library is then sequenced, and ligated fragments are assigned to sister chromatids on the basis of strand orientation and the presence of signature mutations. The ensemble of scsHi-C contacts thereby represents genome-wide contact probabilities within and across sister chromatids. scsHi-C can be completed in 2 weeks, has been successfully applied in HeLa cells and can potentially be established for any cell type that allows proper cell cycle synchronization and incorporation of sufficient amounts of 4sT. The genome-wide maps of replicated chromosomes detected by scsHi-C enable investigation of the molecular mechanisms shaping sister chromatid topologies and the relevance of sister chromatid conformation in crucial processes like DNA repair, mitotic chromosome formation and potentially other biological processes.


Subject(s)
Chromatids , DNA Replication , Chromatids/genetics , DNA Repair , HeLa Cells , Humans
3.
Trends Biochem Sci ; 46(2): 169-170, 2021 02.
Article in English | MEDLINE | ID: mdl-33342665

Subject(s)
Chromatids
4.
Nature ; 586(7827): 139-144, 2020 10.
Article in English | MEDLINE | ID: mdl-32968280

ABSTRACT

The three-dimensional organization of the genome supports regulated gene expression, recombination, DNA repair, and chromosome segregation during mitosis. Chromosome conformation capture (Hi-C)1,2 analysis has revealed a complex genomic landscape of internal chromosomal structures in vertebrate cells3-7, but the identical sequence of sister chromatids has made it difficult to determine how they topologically interact in replicated chromosomes. Here we describe sister-chromatid-sensitive Hi-C (scsHi-C), which is based on labelling of nascent DNA with 4-thio-thymidine and nucleoside conversion chemistry. Genome-wide conformation maps of human chromosomes reveal that sister-chromatid pairs interact most frequently at the boundaries of topologically associating domains (TADs). Continuous loading of a dynamic cohesin pool separates sister-chromatid pairs inside TADs and is required to focus sister-chromatid contacts at TAD boundaries. We identified a subset of TADs that are overall highly paired and are characterized by facultative heterochromatin and insulated topological domains that form separately within individual sister chromatids. The rich pattern of sister-chromatid topologies and our scsHi-C technology will make it possible to investigate how physical interactions between identical DNA molecules contribute to DNA repair, gene expression, chromosome segregation, and potentially other biological processes.


Subject(s)
Chromatids/chemistry , Chromosome Pairing , DNA Replication , Genome, Human/genetics , Nucleic Acid Conformation , Cell Cycle Proteins/metabolism , Chromatids/genetics , Chromatids/metabolism , Chromosomal Proteins, Non-Histone/metabolism , DNA/analysis , DNA/biosynthesis , Heterochromatin/chemistry , Heterochromatin/genetics , Heterochromatin/metabolism , Humans , Cohesins
5.
Sci Rep ; 7: 45197, 2017 03 24.
Article in English | MEDLINE | ID: mdl-28338079

ABSTRACT

Despite major advances on miRNA profiling and target predictions, functional readouts for endogenous miRNAs are limited and frequently lead to contradicting conclusions. Numerous approaches including functional high-throughput and miRISC complex evaluations suggest that the functional miRNAome differs from the predictions based on quantitative sRNA profiling. To resolve the apparent contradiction of expression versus function, we generated and applied a fluorescence reporter gene assay enabling single cell analysis. This approach integrates and adapts a mathematical model for miRNA-driven gene repression. This model predicts three distinct miRNA-groups with unique repression activities (low, mid and high) governed not just by expression levels but also by miRNA/target-binding capability. Here, we demonstrate the feasibility of the system by applying controlled concentrations of synthetic siRNAs and in parallel, altering target-binding capability on corresponding reporter-constructs. Furthermore, we compared miRNA-profiles with the modeled predictions of 29 individual candidates. We demonstrate that expression levels only partially reflect the miRNA function, fitting to the model-projected groups of different activities. Furthermore, we demonstrate that subcellular localization of miRNAs impacts functionality. Our results imply that miRNA profiling alone cannot define their repression activity. The gene regulatory function is a dynamic and complex process beyond a minimalistic conception of "highly expressed equals high repression".


Subject(s)
MicroRNAs/genetics , Single-Cell Analysis/methods , Down-Regulation , HEK293 Cells , HeLa Cells , Humans , MicroRNAs/metabolism , Microscopy, Fluorescence/methods , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...