Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(31): 38039-38048, 2023 Aug 09.
Article in English | MEDLINE | ID: mdl-37497599

ABSTRACT

Pockels and Kerr effects are linear and nonlinear electro-optical effects, respectively, used in many applications. The modulation of the refractive index is employed in different photonic circuits. However, the greatest challenge is in photonic elements for quantum computing at room temperature. For this aim, materials with strong Pockels/Kerr effects and χ(2)/χ(3) nonlinear susceptibilities are necessary. Here, we demonstrate composition-modulated strong electro-optical response in epitaxial films of (Ba,Ca)(Ti,Zr)O3 perovskite titanate. These films are grown by pulsed laser deposition on SrTiO3. Depending on the ratios of Ca/Ba and Ti/Zr, films show high Pockels or Kerr optical nonlinearities. We relate the variable electro-optic response to the occurrence of nanopolar domains with different symmetries in a selected composition range. These findings open the route to easily implement nonlinear optical elements in integrated photonic circuits.

2.
Sci Adv ; 6(5): eaay4312, 2020 Jan.
Article in English | MEDLINE | ID: mdl-32064349

ABSTRACT

Hydrogen as a fuel can be stored safely with high volumetric density in metals. It can, however, also be detrimental to metals, causing embrittlement. Understanding fundamental behavior of hydrogen at the atomic scale is key to improve the properties of metal-metal hydride systems. However, currently, there is no robust technique capable of visualizing hydrogen atoms. Here, we demonstrate that hydrogen atoms can be imaged unprecedentedly with integrated differential phase contrast, a recently developed technique performed in a scanning transmission electron microscope. Images of the titanium-titanium monohydride interface reveal stability of the hydride phase, originating from the interplay between compressive stress and interfacial coherence. We also uncovered, 30 years after three models were proposed, which one describes the position of hydrogen atoms with respect to the interface. Our work enables previously unidentified research on hydrides and is extendable to all materials containing light and heavy elements, including oxides, nitrides, carbides, and borides.

3.
ACS Appl Mater Interfaces ; 8(30): 19605-11, 2016 Aug 03.
Article in English | MEDLINE | ID: mdl-27409358

ABSTRACT

The next generation of nonvolatile memory storage may well be based on resistive switching in metal oxides. TiO2 as transition metal oxide has been widely used as active layer for the fabrication of a variety of multistate memory nanostructure devices. However, progress in their technological development has been inhibited by the lack of a thorough understanding of the underlying switching mechanisms. Here, we employed high-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) combined with two-dimensional energy dispersive X-ray spectroscopy (2D EDX) to provide a novel, nanoscale view of the mechanisms involved. Our results suggest that the switching mechanism involves redistribution of both Ti and O ions within the active layer combined with an overall loss of oxygen that effectively render conductive filaments. Our study shows evidence of titanium movement in a 10 nm TiO2 thin-film through direct EDX mapping that provides a viable starting point for the improvement of the robustness and lifetime of TiO2-based resistive random access memory (RRAM).

4.
Microsc Res Tech ; 79(4): 239-50, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26818213

ABSTRACT

The introduction of scanning/transmission electron microscopes (S/TEM) with sub-Angstrom resolution as well as fast and sensitive detection solutions support direct observation of dynamic phenomena in-situ at the atomic scale. Thereby, in-situ specimen holders play a crucial role: accurate control of the applied in-situ stimulus on the nanostructure combined with the overall system stability to assure atomic resolution are paramount for a successful in-situ S/TEM experiment. For those reasons, MEMS-based TEM sample holders are becoming one of the preferred choices, also enabling a high precision in measurements of the in-situ parameter for more reproducible data. A newly developed MEMS-based microheater is presented in combination with the new NanoEx™-i/v TEM sample holder. The concept is built on a four-point probe temperature measurement approach allowing active, accurate local temperature control as well as calorimetry. In this paper, it is shown that it provides high temperature stability up to 1,300°C with a peak temperature of 1,500°C (also working accurately in gaseous environments), high temperature measurement accuracy (<4%) and uniform temperature distribution over the heated specimen area (<1%), enabling not only in-situ S/TEM imaging experiments, but also elemental mapping at elevated temperatures using energy-dispersive X-ray spectroscopy (EDS). Moreover, it has the unique capability to enable simultaneous heating and biasing experiments.

5.
Chem Commun (Camb) ; (6): 580-2, 2007 Feb 14.
Article in English | MEDLINE | ID: mdl-17264897

ABSTRACT

Capped boron nanoparticles have been synthesized at room temperature by a simple route that does not involve the use of flammable boranes.

6.
Micron ; 37(5): 385-8, 2006.
Article in English | MEDLINE | ID: mdl-16554164

ABSTRACT

The aim of this work is to monitor changes of the N-K electron energy-loss near-edge structure (ELNES) of chromium nitride layers (CrN) introduced by electron irradiation in a transmission electron microscope (TEM). These changes are different for each sample material and seem to give an indication for a particular composition. The CrN samples (CrN and Cr(0.47)N(0.53)) were prepared on silicon wafers by reactive magnetron sputtering of a metallic chromium target in nitrogen plasma. In addition, a CrON sample (Cr(0.5)O(0.2)N(0.3)) was also investigated. This sample was prepared by the addition of oxygen to the plasma during film deposition. The ELNES of the N-K ionization edge of stoichiometric CrN shows a typical fine structure (peaks at 399.0 and 401.1 eV) and remains nearly unaffected even after high-current-density irradiation. On the other hand the N-K fine structures of Cr(0.47)N(0.53) and Cr(0.5)O(0.2)N(0.3) show a change of the ELNES with irradiation dose. This presumably arises from a 1s-pi*-transition of molecular nitrogen located at interstitial positions in these samples.

7.
Ultramicroscopy ; 101(2-4): 123-8, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15450657

ABSTRACT

The 'lift-out' technique using a focused ion beam microscope was applied to prepare cross-sectional specimens of organic light-emitting diodes for use in transmission electron microscopy. The focused ion beam equally thins the organic/inorganic hybrid devices despite the difference in material hardness of the compounds. This allowed to overcome preparation difficulties of conventional techniques such as ion thinning or ultra-microtomy. Two different samples were prepared and studied by both conventional transmission electron microscopy and analytical electron microscopy to display some of the investigation possibilities which become available with this sample preparation method.


Subject(s)
Microscopy, Electron, Transmission , Polymers/chemistry , Specimen Handling/methods , Aluminum/chemistry , Calcium/chemistry , Carbon/chemistry , Electrodes , Light , Tin Compounds
SELECTION OF CITATIONS
SEARCH DETAIL
...