Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Agric Food Chem ; 72(20): 11480-11492, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38733562

ABSTRACT

Food-derived peptides with an inhibitory effect on dipeptidyl peptidase IV (DPP-IV) can be used as an additive treatment for type 2 diabetes. The inhibitory potential of food depends on technological protein hydrolysis and gastrointestinal digestion, as the peptides only act after intestinal resorption. The effect of malting as a hydrolytic step on the availability of these peptides in grains has yet to be investigated. In this study, quinoa was malted under systematic temperature, moisture, and time variations. In the resulting malts, the DPP-IV inhibition reached a maximum of 45.02 (±10.28) %, whereas the highest overall concentration of literature-known inhibitory peptides was 4.07 µmol/L, depending on the malting parameters. After in vitro gastrointestinal digest, the inhibition of most malts, as well as the overall concentration of inhibitory peptides, could be increased significantly. Additionally, the digested malts showed higher values in both the inhibition and the peptide concentration than the unmalted quinoa. Concerning the malting parameters, germination time had the highest impact on the inhibition and the peptide concentration after digest. An analysis of the protein sizes before and after malting gave first hints toward the origin of these peptides, or their precursors, in quinoa.


Subject(s)
Chenopodium quinoa , Dipeptidyl-Peptidase IV Inhibitors , Peptides , Chenopodium quinoa/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Peptides/chemistry , Peptides/pharmacology , Peptides/metabolism , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl Peptidase 4/chemistry , Food Handling , Germination , Plant Proteins/chemistry , Plant Proteins/metabolism , Hydrolysis , Seeds/chemistry , Seeds/metabolism , Humans , Digestion
2.
Nutrients ; 16(3)2024 Jan 26.
Article in English | MEDLINE | ID: mdl-38337658

ABSTRACT

Despite substantial heterogeneity of studies, there is evidence that antibiotics commonly used in primary care influence the composition of the gastrointestinal microbiota in terms of changing their composition and/or diversity. Benzyl isothiocyanate (BITC) from the food and medicinal plant nasturtium (Tropaeolum majus) is known for its antimicrobial activity and is used for the treatment of infections of the draining urinary tract and upper respiratory tract. Against this background, we raised the question of whether a 14 d nasturtium intervention (3 g daily, N = 30 healthy females) could also impact the normal gut microbiota composition. Spot urinary BITC excretion highly correlated with a weak but significant antibacterial effect against Escherichia coli. A significant increase in human beta defensin 1 as a parameter for host defense was seen in urine and exhaled breath condensate (EBC) upon verum intervention. Pre-to-post analysis revealed that mean gut microbiome composition did not significantly differ between groups, nor did the circulating serum metabolome. On an individual level, some large changes were observed between sampling points, however. Explorative Spearman rank correlation analysis in subgroups revealed associations between gut microbiota and the circulating metabolome, as well as between changes in blood markers and bacterial gut species.


Subject(s)
Gastrointestinal Microbiome , Nasturtium , Tropaeolum , Female , Humans , Isothiocyanates/pharmacology , Bacteria , Escherichia coli , Metabolome
3.
J Agric Food Chem ; 71(22): 8633-8647, 2023 Jun 07.
Article in English | MEDLINE | ID: mdl-37232935

ABSTRACT

Amino acids and acylcarnitines are important biomarkers of the body's energy state and can be used as diagnostic markers of certain inborn errors of metabolism. Few multianalyte methods for high-throughput analysis in serum exist for these compounds, but micromethods suitable for use in young children and infants are lacking. Therefore, we developed a quantitative high-throughput multianalyte hydrophilic interaction liquid chromatography-tandem mass spectrometry method preceded by a derivatization-free sample preparation using minimum amounts of serum (25 µL). Isotopically labeled standards were utilized for quantification. Forty amino acids and amino acid derivatives and 22 acylcarnitines were detected by applying a multiple reaction monitoring mode within a 20 min run. The method was comprehensively validated, comprising linearity, accuracy, (intraday/interday) precision, and quantitation limits, of which the latter ranged from 0.25 to 50 nM for acylcarnitines and from 0.005 to 1 µM for amino acids and their derivatives. Application of the method to 145 serum samples of three- to four-month-old healthy infants showed excellent reproducibility for multiday analyses and enabled simultaneous amino acid and acylcarnitine profiling in this age group.


Subject(s)
Amino Acids , Tandem Mass Spectrometry , Child , Infant , Humans , Child, Preschool , Amino Acids/metabolism , Tandem Mass Spectrometry/methods , Reproducibility of Results , Carnitine
SELECTION OF CITATIONS
SEARCH DETAIL
...