Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
Antimicrob Agents Chemother ; 67(10): e0048223, 2023 10 18.
Article in English | MEDLINE | ID: mdl-37724886

ABSTRACT

Antimicrobial resistance has made a sizeable impact on public health and continues to threaten the effectiveness of antibacterial therapies. Novel bacterial topoisomerase inhibitors (NBTIs) are a promising class of antibacterial agents with a unique binding mode and distinct pharmacology that enables them to evade existing resistance mechanisms. The clinical development of NBTIs has been plagued by several issues, including cardiovascular safety. Herein, we report a sub-series of tricyclic NBTIs bearing an amide linkage that displays promising antibacterial activity, potent dual-target inhibition of DNA gyrase and topoisomerase IV (TopoIV), as well as improved cardiovascular safety and metabolic profiles. These amide NBTIs induced both single- and double-strand breaks in pBR322 DNA mediated by Staphylococcus aureus DNA gyrase, in contrast to prototypical NBTIs that cause only single-strand breaks. Unexpectedly, amides 1a and 1b targeted human topoisomerase IIα (TOP2α) causing both single- and double-strand breaks in pBR322 DNA, and induced DNA strand breaks in intact human leukemia K562 cells. In addition, anticancer drug-resistant K/VP.5 cells containing decreased levels of TOP2α were cross-resistant to amides 1a and 1b. Together, these results demonstrate broad spectrum antibacterial properties of selected tricyclic NBTIs, desirable safety profiles, an unusual ability to induce DNA double-stranded breaks, and activity against human TOP2α. Future work will be directed toward optimization and development of tricyclic NBTIs with potent and selective activity against bacteria. Finally, the current results may provide an additional avenue for development of selective anticancer agents.


Subject(s)
DNA Gyrase , Topoisomerase Inhibitors , Humans , Topoisomerase Inhibitors/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcus aureus/metabolism , DNA , Amides/pharmacology , Topoisomerase II Inhibitors/pharmacology , Microbial Sensitivity Tests
2.
Int J Mol Sci ; 24(15)2023 Jul 28.
Article in English | MEDLINE | ID: mdl-37569485

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are an emerging class of antibacterials that target gyrase and topoisomerase IV. A hallmark of NBTIs is their ability to induce gyrase/topoisomerase IV-mediated single-stranded DNA breaks and suppress the generation of double-stranded breaks. However, a previous study reported that some dioxane-linked amide NBTIs induced double-stranded DNA breaks mediated by Staphylococcus aureus gyrase. To further explore the ability of this NBTI subclass to increase double-stranded DNA breaks, we examined the effects of OSUAB-185 on DNA cleavage mediated by Neisseria gonorrhoeae gyrase and topoisomerase IV. OSUAB-185 induced single-stranded and suppressed double-stranded DNA breaks mediated by N. gonorrhoeae gyrase. However, the compound stabilized both single- and double-stranded DNA breaks mediated by topoisomerase IV. The induction of double-stranded breaks does not appear to correlate with the binding of a second OSUAB-185 molecule and extends to fluoroquinolone-resistant N. gonorrhoeae topoisomerase IV, as well as type II enzymes from other bacteria and humans. The double-stranded DNA cleavage activity of OSUAB-185 and other dioxane-linked NBTIs represents a paradigm shift in a hallmark characteristic of NBTIs and suggests that some members of this subclass may have alternative binding motifs in the cleavage complex.


Subject(s)
DNA Topoisomerase IV , Neisseria gonorrhoeae , Humans , DNA Gyrase/metabolism , DNA Breaks, Double-Stranded , Topoisomerase II Inhibitors/pharmacology , Topoisomerase II Inhibitors/chemistry
3.
Vet Microbiol ; 284: 109840, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37531840

ABSTRACT

Multidrug-resistant bacteria infect companion animals and livestock in addition to their devastating impact on human health. Novel Bacterial Topoisomerase Inhibitors (NBTIs) with excellent activity against Gram-positive bacteria have previously been identified as promising new antibacterial agents. Herein, we evaluate the antibacterial activity of these NBTIs against a variety of important veterinary pathogens and demonstrate outstanding in vitro activity, especially against staphylococci.


Subject(s)
Bacteria , Topoisomerase Inhibitors , Animals , Humans , Topoisomerase Inhibitors/pharmacology , Structure-Activity Relationship , Anti-Bacterial Agents/pharmacology , Gram-Positive Bacteria , Microbial Sensitivity Tests/veterinary
4.
Microbiol Spectr ; 10(6): e0205622, 2022 12 21.
Article in English | MEDLINE | ID: mdl-36250857

ABSTRACT

The development of novel treatments for Staphylococcus aureus infections remains a high priority worldwide. We previously reported compounds 0147 and 0186, novel bacterial topoisomerase inhibitors (NBTIs) with potent antibacterial activity against S. aureus, including methicillin-resistant S. aureus. Here, we further investigated the in vitro activity of 0147 and 0186 against S. aureus ATCC 29213. Both compounds demonstrated bactericidal activity against planktonic and biofilm S. aureus, which then translated into significant inhibition of biofilm formation. Combinations of NBTIs and glycopeptides yielded indifferent interactions against planktonic S. aureus, but several had synergistic effects against S. aureus biofilms. This work reinforces the potential of NBTIs as future therapeutics for S. aureus infections. IMPORTANCE The pathogen Staphylococcus aureus contributes substantially to infection-related mortality. Biofilms render bacteria more recalcitrant to antibacterial therapy. The manuscript describes the potent activity of a new class of antibacterial agents against both planktonic and biofilm populations of Staphylococcus aureus.


Subject(s)
Methicillin-Resistant Staphylococcus aureus , Staphylococcal Infections , Humans , Staphylococcus aureus , Topoisomerase Inhibitors/pharmacology , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Staphylococcal Infections/drug therapy , Staphylococcal Infections/microbiology , Biofilms , Dioxanes/pharmacology
5.
ACS Med Chem Lett ; 13(6): 955-963, 2022 Jun 09.
Article in English | MEDLINE | ID: mdl-35707162

ABSTRACT

Antibacterial resistance continues its devastation of available therapies. Novel bacterial topoisomerase inhibitors (NBTIs) offer one solution to this critical issue. Two series of amine NBTIs bearing tricyclic DNA-binding moieties as well as amide NBTIs with a bicyclic DNA-binding moiety were synthesized and evaluated against methicillin-resistant Staphylococcus aureus (MRSA). Additionally, these compounds and a series of bicyclic amine analogues displayed high activity against susceptible and drug-resistant Neisseria gonorrhoeae, expanding the spectrum of these dioxane-linked NBTIs.

6.
SynOpen ; 6(2): 110-131, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37206085

ABSTRACT

The synthesis of aromatic heterocycles has attracted substantial attention due to the abundance of these heterocycles in drug molecules, natural products, and other compounds of biological interest. Accordingly, there is a demand for straightforward synthetic protocols toward such compounds using readily available starting materials. In the past decade, there have been substantial developments in heterocycle synthesis, especially in metal-catalyzed and iodine-assisted approaches. This graphical review focuses on notable reactions from the past decade using aryl and heteroaryl methyl ketones as starting materials, including representative reaction mechanisms.

7.
J Med Chem ; 64(20): 15214-15249, 2021 10 28.
Article in English | MEDLINE | ID: mdl-34614347

ABSTRACT

Novel bacterial topoisomerase inhibitors (NBTIs) are among the most promising new antibiotics in preclinical/clinical development. We previously reported dioxane-linked NBTIs with potent antistaphylococcal activity and reduced hERG inhibition, a key safety liability. Herein, polarity-focused optimization enabled the delineation of clear structure-property relationships for both microsomal metabolic stability and hERG inhibition, resulting in the identification of lead compound 79. This molecule demonstrates potent antibacterial activity against diverse Gram-positive pathogens, inhibition of both DNA gyrase and topoisomerase IV, a low frequency of resistance, a favorable in vitro cardiovascular safety profile, and in vivo efficacy in a murine model of methicillin-resistant Staphylococcus aureus infection.


Subject(s)
Anti-Bacterial Agents/pharmacology , Dioxanes/pharmacology , Enzyme Inhibitors/pharmacology , Ether-A-Go-Go Potassium Channels/antagonists & inhibitors , Methicillin-Resistant Staphylococcus aureus/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/metabolism , Dioxanes/chemical synthesis , Dioxanes/chemistry , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ether-A-Go-Go Potassium Channels/metabolism , Humans , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
8.
ACS Med Chem Lett ; 11(12): 2446-2454, 2020 Dec 10.
Article in English | MEDLINE | ID: mdl-33335666

ABSTRACT

In recent years, novel bacterial topoisomerase inhibitors (NBTIs) have been developed as future antibacterials for treating multidrug-resistant bacterial infections. A series of dioxane-linked NBTIs with an amide moiety has been synthesized and evaluated. Compound 3 inhibits DNA gyrase, induces the formation of single strand breaks to bacterial DNA, and achieves potent antibacterial activity against a variety of Gram-positive pathogens, including methicillin-resistant Staphylococcus aureus (MRSA). Optimization of this series of analogues led to the discovery of a subseries of compounds (22-25) with more potent anti-MRSA activity, dual inhibition of DNA gyrase and topoisomerase IV, and the ability to induce double strand breaks through inhibition of S. aureus DNA gyrase.

9.
Eur J Med Chem ; 199: 112324, 2020 Aug 01.
Article in English | MEDLINE | ID: mdl-32402932

ABSTRACT

A series of Novel Bacterial Topoisomerase Inhibitors (NBTIs) employing a linker derived from isomannide were synthesized and evaluated. Reduced hERG inhibition was observed compared to structure-matched analogues with different linkers, and compound 6 showed minimal proarrhythmic potential using an in vitro panel of cardiac ion channels. Compound 6 also displayed excellent activity against fluoroquinolone-resistant MRSA (MIC90 = 2 µg/mL) and other Gram-positive pathogens.


Subject(s)
Anti-Bacterial Agents/pharmacology , Bridged Bicyclo Compounds, Heterocyclic/pharmacology , Gram-Positive Bacteria/drug effects , Topoisomerase Inhibitors/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Bridged Bicyclo Compounds, Heterocyclic/chemical synthesis , Bridged Bicyclo Compounds, Heterocyclic/chemistry , Dose-Response Relationship, Drug , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry
10.
ACS Infect Dis ; 5(7): 1115-1128, 2019 07 12.
Article in English | MEDLINE | ID: mdl-31041863

ABSTRACT

The development of new therapies to treat methicillin-resistant Staphylococcus aureus (MRSA) is needed to counteract the significant threat that MRSA presents to human health. Novel inhibitors of DNA gyrase and topoisomerase IV (TopoIV) constitute one highly promising approach, but continued optimization is required to realize the full potential of this class of antibiotics. Herein, we report further studies on a series of dioxane-linked derivatives, demonstrating improved antistaphylococcal activity and reduced hERG inhibition. A subseries of analogues also possesses enhanced inhibition of the secondary target, TopoIV.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , DNA Gyrase/metabolism , Dioxanes/chemistry , Methicillin-Resistant Staphylococcus aureus/enzymology , Topoisomerase Inhibitors/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Binding Sites , DNA Gyrase/chemistry , DNA Topoisomerase IV/antagonists & inhibitors , DNA Topoisomerase IV/chemistry , DNA Topoisomerase IV/metabolism , Down-Regulation , ERG1 Potassium Channel/metabolism , Humans , K562 Cells , Methicillin-Resistant Staphylococcus aureus/drug effects , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Protein Binding , Structure-Activity Relationship , Topoisomerase Inhibitors/chemistry , Topoisomerase Inhibitors/pharmacology
11.
Bioorg Med Chem Lett ; 28(14): 2477-2480, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29871847
12.
J Med Chem ; 61(3): 1130-1152, 2018 02 08.
Article in English | MEDLINE | ID: mdl-29298069

ABSTRACT

Janus kinases (JAKs) are intracellular tyrosine kinases that mediate the signaling of numerous cytokines and growth factors involved in the regulation of immunity, inflammation, and hematopoiesis. As JAK1 pairs with JAK2, JAK3, and TYK2, a JAK1-selective inhibitor would be expected to inhibit many cytokines involved in inflammation and immune function while avoiding inhibition of the JAK2 homodimer regulating erythropoietin and thrombopoietin signaling. Our efforts began with tofacitinib, an oral JAK inhibitor approved for the treatment of rheumatoid arthritis. Through modification of the 3-aminopiperidine linker in tofacitinib, we discovered highly selective JAK1 inhibitors with nanomolar potency in a human whole blood assay. Improvements in JAK1 potency and selectivity were achieved via structural modifications suggested by X-ray crystallographic analysis. After demonstrating efficacy in a rat adjuvant-induced arthritis (rAIA) model, PF-04965842 (25) was nominated as a clinical candidate for the treatment of JAK1-mediated autoimmune diseases.


Subject(s)
Autoimmune Diseases/drug therapy , Cyclobutanes/pharmacology , Janus Kinase 1/antagonists & inhibitors , Protein Kinase Inhibitors/pharmacology , Pyrimidines/pharmacology , Pyrroles/pharmacology , Sulfonamides/pharmacology , Animals , Arthritis, Experimental/drug therapy , Cyclobutanes/chemistry , Cyclobutanes/pharmacokinetics , Cyclobutanes/therapeutic use , Dogs , Drug Evaluation, Preclinical , Humans , Inhibitory Concentration 50 , Janus Kinase 1/chemistry , Janus Kinase 2/antagonists & inhibitors , Models, Molecular , Protein Conformation , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacokinetics , Protein Kinase Inhibitors/therapeutic use , Pyrimidines/chemistry , Pyrimidines/pharmacokinetics , Pyrimidines/therapeutic use , Pyrroles/chemistry , Pyrroles/pharmacokinetics , Pyrroles/therapeutic use , Rats , Substrate Specificity , Sulfonamides/chemistry , Sulfonamides/pharmacokinetics , Sulfonamides/therapeutic use , Tissue Distribution
13.
Bioorg Med Chem Lett ; 27(15): 3353-3358, 2017 08 01.
Article in English | MEDLINE | ID: mdl-28610977

ABSTRACT

Novel (non-fluoroquinolone) inhibitors of bacterial type II topoisomerases (NBTIs) are an emerging class of antibacterial agents. We report an optimized series of cyclobutylaryl-substituted NBTIs. Compound 14 demonstrated excellent activity both in vitro (S. aureus MIC90=0.125µg/mL) and in vivo (systemic and tissue infections). Enhanced inhibition of Topoisomerase IV correlated with improved activity in S. aureus strains with mutations conferring resistance to NBTIs. Compound 14 also displayed an improved hERG IC50 of 85.9µM and a favorable profile in the anesthetized guinea pig model.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Gyrase/metabolism , DNA Topoisomerase IV/antagonists & inhibitors , Quinolines/pharmacology , Topoisomerase II Inhibitors/pharmacology , Topoisomerase Inhibitors/pharmacology , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , DNA Topoisomerase IV/metabolism , Dose-Response Relationship, Drug , Ether-A-Go-Go Potassium Channels/metabolism , Guinea Pigs , Humans , Microbial Sensitivity Tests , Molecular Structure , Quinolines/chemical synthesis , Quinolines/chemistry , Staphylococcus aureus/drug effects , Staphylococcus aureus/enzymology , Streptococcus pyogenes/drug effects , Streptococcus pyogenes/enzymology , Structure-Activity Relationship , Topoisomerase II Inhibitors/chemical synthesis , Topoisomerase II Inhibitors/chemistry , Topoisomerase Inhibitors/chemical synthesis , Topoisomerase Inhibitors/chemistry
14.
J Med Chem ; 56(13): 5541-52, 2013 Jul 11.
Article in English | MEDLINE | ID: mdl-23755848

ABSTRACT

Herein we describe the structure-aided design and synthesis of a series of pyridone-conjugated monobactam analogues with in vitro antibacterial activity against clinically relevant Gram-negative species including Pseudomonas aeruginosa , Klebsiella pneumoniae , and Escherichia coli . Rat pharmacokinetic studies with compound 17 demonstrate low clearance and low plasma protein binding. In addition, evidence is provided for a number of analogues suggesting that the siderophore receptors PiuA and PirA play a role in drug uptake in P. aeruginosa strain PAO1.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Monobactams/pharmacology , Pyridones/pharmacology , Animals , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacokinetics , Escherichia coli/drug effects , Inhibitory Concentration 50 , Klebsiella pneumoniae/drug effects , Male , Microbial Sensitivity Tests , Molecular Structure , Monobactams/chemistry , Monobactams/pharmacokinetics , Pseudomonas aeruginosa/drug effects , Pyridones/chemistry , Pyridones/pharmacokinetics , Rats , Rats, Wistar
15.
Bioorg Med Chem Lett ; 23(10): 2955-61, 2013 May 15.
Article in English | MEDLINE | ID: mdl-23566517
17.
J Org Chem ; 76(19): 7641-53, 2011 Oct 07.
Article in English | MEDLINE | ID: mdl-21827209

ABSTRACT

The concise total synthesis of dermostatin A is described. Highlights include a two-directional application of the asymmetric acetate aldol method developed in our lab, a novel diastereotopic-group-selective acetal isomerization for terminus differentiation, and a selective cross-metathesis reaction between a terminal olefin and a trienal. A study of the scope and viability of similar cross-metathesis reactions is also described. The synthesis is convergent and utilizes fragments of roughly equal complexity.


Subject(s)
Chemistry Techniques, Synthetic/methods , Polyenes/chemical synthesis , Polyenes/chemistry , Polymers/chemistry , Stereoisomerism , Substrate Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...