Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
2.
J Control Release ; 359: 400-414, 2023 07.
Article in English | MEDLINE | ID: mdl-37315692

ABSTRACT

The use of nanoparticles (NPs) as delivery vehicles for multiple drugs is an intensively developing area. However, the success of NPs' accumulation in the tumor area for efficient tumor treatment has been recently questioned. Distribution of NPs in a laboratory animal is mainly related to the administration route of NPs and their physicochemical parameters, which significantly affect the delivery efficiency. In this work, we aim to compare the therapeutic efficiency and side effects of the delivery of multiple therapeutic agents with NPs by both intravenous and intratumoral injections. For this, we systematically developed universal nanosized carriers based on calcium carbonate (CaCO3) NPs (< 100 nm) that were co-loaded with a photosensitizer (Chlorin e6, Ce6) and chemotherapeutic agent (doxorubicin, Dox) for combined chemo- and photodynamic therapy (PDT) of B16-F10 melanoma tumors. By performing intratumoral or intravenous injections of NPs, we observed different biodistribution profiles and tumor accumulation efficiencies. In particular, after intratumoral administration of NPs, they mostly remained in the tumors (> 97%); while for intravenous injection, the tumor accumulation of NPs was determined to be 8.67-12.4 ID/g%. Although the delivery efficiency of NPs (presented in ID/g%) in the tumor differs, we have developed an effective strategy for tumor inhibition based on combined chemo- and PDT by both intratumoral and intravenous injections of NPs. Notably, after the combined chemo- and PDT treatment with Ce6/Dox@CaCO3 NPs, all B16-F10 melanoma tumors in mice shrank substantially, by approximately 94% for intratumoral injection and 71% for intravenous injection, which are higher values compared to mono-therapy. In addition, the CaCO3 NPs showed negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys, and spleen. Thus, this work demonstrates a successful approach for the enhancement of NPs' efficiency in combined anti-tumor therapy.


Subject(s)
Melanoma , Nanoparticles , Photochemotherapy , Porphyrins , Animals , Mice , Tissue Distribution , Photosensitizing Agents/therapeutic use , Photosensitizing Agents/pharmacology , Doxorubicin/therapeutic use , Doxorubicin/pharmacology , Nanoparticles/therapeutic use , Melanoma/drug therapy , Cell Line, Tumor , Porphyrins/pharmacology
3.
J Colloid Interface Sci ; 643: 232-246, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37060699

ABSTRACT

Recently, multi-modal combined photothermal therapy (PTT) with the use of photo-active materials has attracted significant attention for cancer treatment. However, drug carriers enabling efficient heating at the tumor site are yet to be designed: this is a fundamental requirement for broad implementation of PTT in clinics. In this work, we design and develop hybrid carriers based on multilayer capsules integrated with selenium nanoparticles (Se NPs) and gold nanorods (Au NRs) to realize reactive oxygen species (ROS)-mediated combined PTT. We show theoretically and experimentally that cooperative interaction of Se NPs with Au NRs improves the heat release efficiency of the developed capsules. In addition, after uptake by tumor cells, intracellular ROS level amplified by Se NPs inhibits the tumor growth. As a consequence, the synergy between Se NPs and Au NRs exhibits the advantages of hybrid carriers such as (i) improved photothermal conversion efficiency and (ii) dual-therapeutic effect. The results of in vitro and in vivo experiments demonstrate that the combination of ROS-mediated therapy and PTT has a higher tumor inhibition efficiency compared to the single-agent treatment (using only Se-loaded or Au-loaded capsules). Furthermore, the developed hybrid carriers show negligible in vivo toxicity towards major organs such as the heart, lungs, liver, kidneys and spleen. This study not only provides a potential strategy for the design of multifunctional "all-in-one" carriers, but also contributes to the development of combined PTT in clinical practice.


Subject(s)
Neoplasms , Photochemotherapy , Selenium , Humans , Photochemotherapy/methods , Gold/pharmacology , Selenium/pharmacology , Reactive Oxygen Species , Polymers , Research Design , Photothermal Therapy , Neoplasms/therapy , Cell Line, Tumor
SELECTION OF CITATIONS
SEARCH DETAIL
...