Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 9(3)2020 03 06.
Article in English | MEDLINE | ID: mdl-32155843

ABSTRACT

The plant hormone jasmonic acid (JA) has an important role in many aspects of plant defense response and developmental process. JA triggers interaction between the F-box protein COI1 and the transcriptional repressors of the JAZ family that leads the later to proteasomal degradation. The Jas-motif of JAZs is critical for mediating the COI1 and JAZs interaction in the presence of JA. Here, by using the protoplast transient gene expression system we reported that the Jas-motif of JAZ1 was necessary and sufficient to target a foreign reporter protein for COI1-facilitated degradation. We fused the Jas-motif to the SHY2 transcriptional repressor of auxin signaling pathway to create a chimeric protein JaSHY. Interestingly, JaSHY retained the transcriptional repressor function while become degradable by the JA coreceptor COI1 in a JA-dependent fashion. Moreover, the JA-induced and COI1-facilitated degradation of JaSHY led to activation of a synthetic auxin-responsive promoter activity. These results showed that the modular components of JA signal transduction pathway can be artificially redirected to regulate auxin signaling pathway and control auxin-responsive gene expression. Our work provides a general strategy for using synthetic biology approaches to explore and design cell signaling networks to generate new cellular functions in plant systems.


Subject(s)
Cyclopentanes/metabolism , Gene Expression Regulation, Plant/genetics , Oxylipins/metabolism , Plant Growth Regulators/genetics , Signal Transduction/genetics
2.
Int J Mol Sci ; 20(12)2019 Jun 17.
Article in English | MEDLINE | ID: mdl-31212892

ABSTRACT

Plant cells are separated by cellulose cell walls that impede direct cell-to-cell contact. In order to facilitate intercellular communication, plant cells develop unique cell-wall-spanning structures termed plasmodesmata (PD). PD are membranous channels that link the cytoplasm, plasma membranes, and endoplasmic reticulum of adjacent cells to provide cytoplasmic and membrane continuity for molecular trafficking. PD play important roles for the development and physiology of all plants. The structure and function of PD in the plant cell walls are highly dynamic and tightly regulated. Despite their importance, plasmodesmata are among the few plant cell organelles that remain poorly understood. The molecular properties of PD seem largely elusive or speculative. In this review, we firstly describe the general PD structure and its protein composition. We then discuss the recent progress in identification and characterization of PD-associated plant cell-wall proteins that regulate PD function, with particular emphasis on callose metabolizing and binding proteins, and protein kinases targeted to and around PD.


Subject(s)
Cell Wall/metabolism , Membrane Proteins/chemistry , Membrane Proteins/metabolism , Plant Cells/metabolism , Plasmodesmata/metabolism , Cytoplasm/metabolism , Glucans/metabolism , Glucosyltransferases/metabolism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...