Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Obes Metab Syndr ; 2024 May 13.
Article in English | MEDLINE | ID: mdl-38735655

ABSTRACT

Background: Muscle-liver crosstalk plays an important role in the development and progression of non-alcoholic fatty liver disease (NAFLD). The measurement of muscle echo-intensity during ultrasonography is a real-time, non-invasive method of assessing muscle quality. In this retrospective study, we investigated the significance of poor muscle quality (namely, a greater mass of non-contractile tissue, including intramuscular fat) as a risk factor for advanced liver fibrosis and considered whether it may represent a useful tool for the diagnosis of advanced liver fibrosis. Methods: We analyzed data from 307 patients with NAFLD (143 men and 164 women) who visited the University of Tsukuba Hospital between 2017 and 2022. The patients were stratified into the following tertiles of muscle quality according to their muscle echo-intensity on ultrasonography: modest (84.1 A.U.), intermediate (97.4 A.U.), and poor (113.6 A.U.). We then investigated the relationships between muscle quality and risk factors for advanced liver fibrosis and calculated appropriate cutoff values. Results: Patients with poor muscle quality showed a significant, 7.6-fold greater risk of liver fibrosis compared to those with modest muscle quality. Receiver operating characteristic curve analysis showed that muscle quality assessment was as accurate as the Fibrosis-4 index and NAFLD fibrosis score in screening for liver fibrosis and superior to the assessment of muscle quantity and strength, respectively. Importantly, a muscle echo-intensity of ≥92.4 A.U. may represent a useful marker of advanced liver fibrosis. Conclusion: Muscle quality may represent a useful means of identifying advanced liver fibrosis, and its assessment may become a useful screening tool in daily practice.

2.
PLoS One ; 18(10): e0291880, 2023.
Article in English | MEDLINE | ID: mdl-37862331

ABSTRACT

Lipopolysaccharide (LPS) derived from Porphyromonas gingivalis (P.g.), which causes periodontal disease, contributes to the development of non-alcoholic steatohepatitis (NASH). We investigated the role of Nrf2, an antioxidative stress sensor, in macrophages in the development of NASH induced by LPS from P.g. We generated macrophage-specific Nrf2 gene rescue mice (Nrf2-mRes), which express Nrf2 only in macrophages, using the cre/loxp system. Wild-type (WT) mice, whole body Nrf2-knockout (Nrf2-KO) mice, and Nrf2-mRes mice were fed a high-fat diet for 18 weeks, and LPS from P.g. was administered intraperitoneally for the last 6 weeks. Nrf2-KO mice developed severe steatohepatitis with liver inflammation and fibrosis compared with WT mice, and steatohepatitis was ameliorated in Nrf2-mRes mice. The mRNA expressions of Toll-like receptor (Tlr)-2, which activates inflammatory signaling pathways after LPS binding, and α-smooth muscle actin (αSma), which promotes hepatic fibrosis, were reduced in Nrf2-mRes mice compared with Nrf2-KO mice. The protein levels of LPS-binding protein in livers were increased in Nrf2-KO mice compared with WT mice; however, the levels were reduced in Nrf2-mRes mice despite similar numbers of F4/80 positive cells, which reflect macrophage/Kupffer cell infiltration into the livers. Nrf2 in macrophages ameliorates NASH through the increased hepatic clearance of LPS.


Subject(s)
Non-alcoholic Fatty Liver Disease , Animals , Mice , Diet, High-Fat , Lipopolysaccharides/metabolism , Liver/metabolism , Macrophages/metabolism , Mice, Inbred C57BL , Mice, Knockout , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Non-alcoholic Fatty Liver Disease/metabolism , Porphyromonas gingivalis
3.
Front Physiol ; 13: 993995, 2022.
Article in English | MEDLINE | ID: mdl-36439272

ABSTRACT

Introduction: Obesity is a risk factor for many diseases because it leads to a reduction in skeletal muscle mass and promotes insulin resistance. p62/Sqstm1-knockout mice are a model of metabolic syndrome; show obesity, insulin resistance, and non-alcoholic fatty liver (NAFL); and develop non-alcoholic steatohepatitis (NASH) in response to the feeding of a high-fat diet (HFD). These phenotypes suggest that muscle p62 may prevent obesity-induced muscle dysfunction. In the present study, we aimed to determine the effects of muscle p62 on skeletal muscle mass, muscle strength, insulin resistance, and NASH pathology. Methods: We generated muscle-specific p62 gene rescue mice (p62-mRes), which express p62 only in muscle and were derived from p62-knock out mice (p62 KIKI ) using the cre/loxp system. p62 KIKI and p62-mRes mice were fed an HFD for 20 weeks and their phenotypes were compared. Results: HFD-feeding caused severe obesity in both p62 KIKI and p62-mRes mice, but there was no effect of muscle p62 on body mass. Limb skeletal muscle mass, grip strength, and the cross-sectional area of muscle fibers were higher in p62-mRes mice than in p62 KIKI . The glucose tolerance and insulin sensitivity of the p62-mRes mice were also superior. The protein expression of mechanistic target of rapamycin, which promotes muscle protein synthesis, and GLUT4, a glucose transporter in skeletal muscle, were higher in the p62-mRes mice. p62 KIKI mice developed severe NASH when fed an HFD, but the progression of NASH was retarded by p62 gene rescue in muscle, and the expression of Tgf-ß1, which encodes a factor that promotes hepatic fibrosis, was reduced. Conclusion: Rescue of muscle-specific p62 in the whole-body p62 knock-out mice ameliorates the insulin resistance and retards the progression of NASH caused by systemic p62 ablation.

4.
Antioxidants (Basel) ; 11(10)2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36290662

ABSTRACT

Oxidative stress (OS) contributes to nonalcoholic steatohepatitis (NASH) and hepatocarcinogenesis. We investigated whether antioxidative self-assembling nanoparticles (SMAPoTN) could reduce the development of NASH and hepatocellular carcinoma (HCC) in p62/Sqstm1 and Nrf2 double knockout (DKO) mice and studied protective mechanisms. We measured disease development in male DKO mice fed a normal chow (NASH model) or a 60% high-fat diet (HFD; HCC model) with or without SMAPoTN administration for 26 weeks. SMAPoTN inhibited liver fibrosis in both groups and prevented HCC development (0% vs. 33%, p < 0.05) in the HFD group. SMAPoTN reduced OS, inflammatory cytokine signaling, and liver fibrosis. RNA-sequencing revealed that SMAPoTN decreased endoplasmic reticulum stress signaling genes in both groups, HCC driver genes, and cancer pathway genes, especially PI3K-AKT in the HFD groups. In the SMAPoTN treatment HFD group, serum lipopolysaccharide levels and liver lipopolysaccharide-binding protein expression were significantly lower compared with those in the nontreatment group. SMAPoTN improved the α-diversity of gut microbiota, and changed the microbiota composition. Oral SMAPoTN administration attenuated NASH development and suppressed hepatocarcinogenesis in DKO mice by improving endoplasmic reticulum stress in the liver and intestinal microbiota. SMAPoTN may be a new therapeutic option for NASH subjects and those with a high HCC risk.

5.
Physiol Rep ; 9(24): e15130, 2021 12.
Article in English | MEDLINE | ID: mdl-34927380

ABSTRACT

OBJECTIVE: Excessive exercise increases the production of reactive oxygen species in skeletal muscles. Sulforaphane activates nuclear factor erythroid 2-related factor 2 (Nrf2) and induces a protective effect against oxidative stress. In a recent report, sulforaphane intake suppressed exercise-induced oxidative stress and muscle damage in mice. However, the effect of sulforaphane intake on delayed onset muscle soreness after eccentric exercise in humans is unknown. We evaluated the effect of sulforaphane supplement intake in humans regarding the delayed onset muscle soreness (DOMS) after eccentric exercise. RESEARCH METHODS & PROCEDURES: To determine the duration of sulforaphane supplementation, continuous blood sampling was performed and NQO1 mRNA expression levels were analyzed. Sixteen young men were randomly divided into sulforaphane and control groups. The sulforaphane group received sulforaphane supplements. Each group performed six set of five eccentric exercise with the nondominant arm in elbow flexion with 70% maximum voluntary contraction. We assessed muscle soreness in the biceps using the visual analog scale, range of motion (ROM), muscle damage markers, and oxidative stress marker (malondialdehyde; MDA). RESULTS: Sulforaphane supplement intake for 2 weeks increased NQO1 mRNA expression in peripheral blood mononuclear cells (PBMCs). Muscle soreness on palpation and ROM were significantly lower 2 days after exercise in the sulforaphane group compared with the control group. Serum MDA showed significantly lower levels 2 days after exercise in the sulforaphane group compared with the control group. CONCLUSION: Our findings suggest that sulforaphane intake from 2 weeks before to 4 days after the exercise increased NQO1, a target gene of Nrf2, and suppressed DOMS after 2 days of eccentric exercise.


Subject(s)
Dietary Supplements , Exercise/adverse effects , Isothiocyanates/administration & dosage , Myalgia/drug therapy , NAD(P)H Dehydrogenase (Quinone)/blood , Oxidative Stress/drug effects , Sulfoxides/administration & dosage , Exercise/physiology , Humans , Male , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Myalgia/blood , Myalgia/diagnosis , Oxidative Stress/physiology , Pain Measurement/drug effects , Pain Measurement/methods , Pilot Projects , Random Allocation , Young Adult
6.
Physiol Rep ; 9(9): e14859, 2021 05.
Article in English | MEDLINE | ID: mdl-33991461

ABSTRACT

Exercise ameliorates nonalcoholic fatty liver disease (NAFLD) by inducing phenotypic changes in Kupffer cells (KCs). p62/Sqstm1-knockout (p62-KO) mice develop NAFLD alongside hyperphagia-induced obesity. We evaluated (1) the effects of long-term exercise on the foreign-body phagocytic capacity of KCs, their surface marker expression, and the production of steroid hormones in p62-KO mice; and (2) whether long-term exercise prevented the development of non-alcoholic steatohepatitis (NASH) in p62-KO mice fed a high-fat diet (HFD). In experiment 1, 30-week-old male p62-KO mice were allocated to resting (p62-KO-Rest) or exercise (p62-KO-Ex) groups, and the latter performed long-term exercise over 4 weeks. Then, the phenotype of their KCs was compared to that of p62-KO-Rest and wild-type (WT) mice. In experiment 2, 5-week-old male p62-KO mice that were fed a HFD performed long-term exercise over 12 weeks. In experiment 1, the phagocytic capacity of KCs and the proportion of CD68-positive cells were lower in the p62-KO-Rest group than in the WT group, but they increased with long-term exercise. The percentage of CD11b-positive KCs was higher in the p62-KO-Rest group than in the WT group, but lower in the p62-KO-Ex group. The circulating dehydroepiandrosterone (DHEA) concentration was higher in p62-KO-Ex mice than in p62-KO-Rest mice. In experiment 2, the body mass and composition of the p62-KO-Rest and p62-KO-Ex groups were similar, but the hepatomegaly, hepatic inflammation, and fibrosis were less marked in p62-KO-Ex mice. The DHEA concentration was higher in p62-KO-Ex mice than in WT or p62-KO-Rest mice. Thus, long-term exercise restores the impaired phagocytic capacity of KCs in NAFLD obese mice, potentially through greater DHEA production, and prevents the development of NASH by ameliorating hepatic inflammation and fibrogenesis. These results suggest a molecular mechanism for the beneficial effect of exercise in the management of patients with NAFLD.


Subject(s)
Hyperphagia/complications , Kupffer Cells/metabolism , Non-alcoholic Fatty Liver Disease/prevention & control , Obesity/complications , Physical Conditioning, Animal/methods , Animals , Antigens, CD/metabolism , Antigens, Differentiation, Myelomonocytic/metabolism , Cells, Cultured , Dehydroepiandrosterone/metabolism , Hyperphagia/genetics , Male , Mice , Mice, Inbred C57BL , Motor Activity , Non-alcoholic Fatty Liver Disease/etiology , Non-alcoholic Fatty Liver Disease/genetics , Obesity/genetics , Phenotype , Sequestosome-1 Protein/genetics
7.
Adv Healthc Mater ; 10(10): e2100067, 2021 05.
Article in English | MEDLINE | ID: mdl-33660940

ABSTRACT

Although the adverse effects of excessively generated reactive oxygen species (ROS) on the body during aerobic exercise have been debated, there are few reports on the remarkable effects of the application of conventional antioxidants on exercise performance. The conventional antioxidants could not enhance exercise performance due to their rapid excretion from the body and serious adverse effects on the cellular respiratory system. In this study, impact of the original antioxidant self-assembling nanoparticle, redox-active nanoparticle (RNP), is investigated on the exercise performance of rats during running experiments. With an increase in the dose of the administered RNP, the all-out time of the rat running extends in a dose-dependent manner. In contrast, with an increase in the dose of the low-molecular-weight (LMW) antioxidant, the all-out running time of the rats decreases. The control group and LMW antioxidant treated group decrease in the number of red blood cells (RBCs) and increase oxidative stress after running. However, the RNP group maintains a similar RBC level and oxidative stress as that of the sedentary group. The results suggest that RNP, which shows long-blood circulation without disturbance of mitohormesis, effectively removes ROS from the bloodstream to suppresses RBC oxidative stress and damage, thus improving exercise performance.


Subject(s)
Nanoparticles , Running , Animals , Antioxidants/pharmacology , Oxidation-Reduction , Oxidative Stress , Rats , Reactive Oxygen Species
SELECTION OF CITATIONS
SEARCH DETAIL
...