Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Pediatr Res ; 60(2): 196-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16864703

ABSTRACT

Studies using in vitro analysis have shown that the interaction between pulmonary surfactant and vernix caseosa could explain the appearance of amniotic fluid turbidity. That phenomenon is interpreted based on the "roll-up" hypothesis. We tested the roll-up hypothesis by examining the presence of micelles of pulmonary surfactant in human amniotic fluid at term. Amniotic fluid samples were collected from each of six healthy pregnant women at term and at 16 wk of gestation. These samples were stained negatively and analyzed using an electron microscope. Ultrastructures present in amniotic fluid were compared with the structure of micelles derived from suspended surfactant TA isolated from bovine lung. Surfactant TA formed spheroidal and rod-shaped micelles 10-70 nm in diameter above the critical micelle concentration. Identical micelle particles were described in human amniotic fluid at term. In addition, surfactant protein B was identified in the micelle fraction of amniotic fluid. However, no micelles were found in human amniotic fluid taken at 16 wk of gestation. Our results support the view that pulmonary surfactant could induce the detachment of vernix caseosa and increase the turbidity of the amniotic fluid.


Subject(s)
Amniotic Fluid/chemistry , Micelles , Pulmonary Surfactants/chemistry , Vernix Caseosa/chemistry , Amniotic Fluid/metabolism , Animals , Cattle , Female , Humans , Microscopy, Electron , Pregnancy , Pregnancy Trimester, Third/metabolism , Pulmonary Surfactant-Associated Protein B/analysis , Pulmonary Surfactants/metabolism , Vernix Caseosa/metabolism
2.
Anal Sci ; 21(9): 1105-10, 2005 Sep.
Article in English | MEDLINE | ID: mdl-16363481

ABSTRACT

A sensitive and selective method has been developed for the simultaneous determination of cadmium, zinc, nickel and cobalt. The method is based on the chelation of metal ions with 2-(8-quinolylazo)-4,5-diphenylimidazole (QAI) and the subsequent reversed-phase (RP) high-performance liquid chromatographic separation and spectrophotometric detection of the metal chelates. The chelates were separated on an RP column with acetonitrile-water containing ethylenediamine tetraacetic acid and sodium acetate (pH 7.5). Though Zn(II) and Cd(II) chelates with azo compounds were generally labile in the RP column, these chelates with QAI were successfully detected. When analyses were carried out at 575 nm and at 0.001 absorbance unit full scale, the peak height calibration curves were linear up to 2.0 ng for Cd(II), 2.4 ng for Zn(II), 0.14 ng for Ni(II) and 0.72 ng for Co(II) in 100-microL injections, respectively; the detection limits (3sigma, three times of the standard deviation for the blank signal) for Cd(II), Zn(II), Ni(II) and Co(II) were 4.8, 24, 2.4 and 7.2 pg in 100 microL of injected solution, respectively. The proposed method was successfully applied to the analysis of tobacco without any preliminary concentration or separation.


Subject(s)
Azo Compounds/chemistry , Cadmium/analysis , Cobalt/analysis , Imidazoles/chemistry , Nickel/analysis , Nicotiana/chemistry , Zinc/analysis , Animals , Chelating Agents/chemistry , Chromatography, High Pressure Liquid/methods , Hydrogen-Ion Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...