Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
ChemMedChem ; : e202400323, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38830821

ABSTRACT

Boron neutron capture therapy (BNCT) is one of the most promising modalities for cancer treatment due to its minimal invasiveness. Although two types of boron agents are clinically used, several issues persist in their delivery, including poor water solubility, instability in aqueous media, selectivity toward cancer cells, accumulation in cancer cells, retention time in tumor tissue, and efficiency in achieving the boron neutron capture reaction. Addressing these challenges, numerous groups have explored various boron agents to enhance the therapeutic benefits of BNCT. This review summarizes delivery platforms based on natural products for BNCT.

2.
Chemistry ; 29(72): e202302486, 2023 Dec 22.
Article in English | MEDLINE | ID: mdl-37792507

ABSTRACT

Boron neutron capture therapy (BNCT) is a promising modality for cancer treatment because of its minimal invasiveness. To maximize the therapeutic benefits of BNCT, the development of efficient platforms for the delivery of boron agents is indispensable. Here, carborane-integrated immunoliposomes were prepared via an exchanging reaction to achieve HER-2-targeted BNCT. The conjugation of an anti-HER-2 antibody to carborane-integrated liposomes successfully endowed these liposomes with targeting properties toward HER-2-overexpressing human ovarian cancer cells (SK-OV3); the resulting BNCT activity toward SK-OV3 cells obtained using the current immunoliposomal system was 14-fold that of the l-BPA/fructose complex, which is a clinically available boron agent. Moreover, the growth of spheroids treated with this system followed by thermal neutron irradiation was significantly suppressed compared with treatment with the l-BPA/fructose complex.


Subject(s)
Boranes , Boron Neutron Capture Therapy , Humans , Liposomes , Boron Neutron Capture Therapy/methods , Boron , Boron Compounds , Fructose
3.
Sci Rep ; 7(1): 15899, 2017 Nov 21.
Article in English | MEDLINE | ID: mdl-29162912

ABSTRACT

Histamine is a neurotransmitter that regulates diverse physiological functions including the sleep-wake cycle. Recent studies have reported that histaminergic dysfunction in the brain is associated with neuropsychiatric disorders. Histamine N-methyltransferase (HNMT) is an enzyme expressed in the central nervous system that specifically metabolises histamine; yet, the exact physiological roles of HNMT are unknown. Accordingly, we phenotyped Hnmt knockout mice (KO) to determine the relevance of HNMT to various brain functions. First, we showed that HNMT deficiency enhanced brain histamine concentrations, confirming a role for HNMT in histamine inactivation. Next, we performed comprehensive behavioural testing and determined that KO mice exhibited high aggressive behaviours in the resident-intruder and aggressive biting behaviour tests. High aggression in KO mice was suppressed by treatment with zolantidine, a histamine H2 receptor (H2R) antagonist, indicating that abnormal H2R activation promoted aggression in KO mice. A sleep analysis revealed that KO mice exhibited prolonged bouts of awakening during the light (inactive) period and compensatory sleep during the dark (active) period. Abnormal sleep behaviour was suppressed by treatment with pyrilamine, a H1R antagonist, prior to light period, suggesting that excessive H1R activation led to the dysregulation of sleep-wake cycles in KO mice. These observations inform the physiological roles of HNMT.


Subject(s)
Aggression/physiology , Histamine N-Methyltransferase/metabolism , Sleep/physiology , Wakefulness/physiology , Animals , Behavior, Animal , Brain/metabolism , Histamine/metabolism , Histamine N-Methyltransferase/deficiency , Locomotion , Male , Mice, Inbred C57BL , Mice, Knockout , Receptors, Histamine/metabolism , Reproducibility of Results
4.
FEBS Open Bio ; 7(2): 237-248, 2017 02.
Article in English | MEDLINE | ID: mdl-28174689

ABSTRACT

The dysregulation of monoamine clearance in the central nervous system occurs in various neuropsychiatric disorders, and the role of polyspecific monoamine transporters in monoamine clearance is increasingly highlighted in recent studies. However, no study to date has properly characterized polyspecific monoamine transporters in the mouse brain. In the present study, we examined the kinetic properties of three mouse polyspecific monoamine transporters [organic cation transporter 2 (Oct2), Oct3, and plasma membrane monoamine transporter (Pmat)] and compared the absolute mRNA expression levels of these transporters in various brain areas. First, we evaluated the affinities of each transporter for noradrenaline, dopamine, serotonin, and histamine, and found that mouse ortholog substrate affinities were similar to those of human orthologs. Next, we performed drug inhibition assays and identified interspecies differences in the pharmacological properties of polyspecific monoamine transporters; in particular, corticosterone and decynium-22, which are widely recognized as typical inhibitors of human OCT3, enhanced the transport activity of mouse Oct3. Finally, we quantified absolute mRNA expression levels of each transporter in various regions of the mouse brain and found that while all three transporters were ubiquitously expressed, Pmat was the most highly expressed transporter. These results provide an important foundation for future translational research investigating the roles of polyspecific monoamine transporters in neurological and neuropsychiatric disease.

5.
Glia ; 63(7): 1213-25, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25754956

ABSTRACT

Histamine is a physiological amine which initiates a multitude of physiological responses by binding to four known G-protein coupled histamine receptor subtypes as follows: histamine H1 receptor (H1 R), H2 R, H3 R, and H4 R. Brain histamine elicits neuronal excitation and regulates a variety of physiological processes such as learning and memory, sleep-awake cycle and appetite regulation. Microglia, the resident macrophages in the brain, express histamine receptors; however, the effects of histamine on critical microglial functions such as chemotaxis, phagocytosis, and cytokine secretion have not been examined in primary cells. We demonstrated that mouse primary microglia express H2 R, H3 R, histidine decarboxylase, a histamine synthase, and histamine N-methyltransferase, a histamine metabolizing enzyme. Both forskolin-induced cAMP accumulation and ATP-induced intracellular Ca(2+) transients were reduced by the H3 R agonist imetit but not the H2 R agonist amthamine. H3 R activation on two ubiquitous second messenger signalling pathways suggests that H3 R can regulate various microglial functions. In fact, histamine and imetit dose-dependently inhibited microglial chemotaxis, phagocytosis, and lipopolysaccharide (LPS)-induced cytokine production. Furthermore, we confirmed that microglia produced histamine in the presence of LPS, suggesting that H3 R activation regulate microglial function by autocrine and/or paracrine signalling. In conclusion, we demonstrate the involvement of histamine in primary microglial functions, providing the novel insight into physiological roles of brain histamine.


Subject(s)
Chemotaxis/physiology , Cytokines/metabolism , Microglia/physiology , Phagocytosis/physiology , Receptors, Histamine H3/metabolism , Animals , Calcium/metabolism , Cells, Cultured , Cyclic AMP/metabolism , Dinoprostone/metabolism , Histamine/metabolism , Mice, Inbred C57BL , RNA, Messenger/metabolism , Receptors, Histamine H2/metabolism , Tumor Necrosis Factor-alpha/metabolism
6.
FEBS Open Bio ; 5: 36-41, 2015.
Article in English | MEDLINE | ID: mdl-25685663

ABSTRACT

Pancreatic α-cells secrete glucagon to maintain energy homeostasis. Although histamine has an important role in energy homeostasis, the expression and function of histamine receptors in pancreatic α-cells remains unknown. We found that the histamine H3 receptor (H3R) was expressed in mouse pancreatic α-cells and αTC1.6 cells, a mouse pancreatic α-cell line. H3R inhibited glucagon secretion from αTC1.6 cells by inhibiting an increase in intracellular Ca(2+) concentration. We also found that immepip, a selective H3R agonist, decreased serum glucagon concentration in rats. These results suggest that H3R modulates glucagon secretion from pancreatic α-cells.

7.
J Nutr ; 144(10): 1637-41, 2014 Oct.
Article in English | MEDLINE | ID: mdl-25056690

ABSTRACT

L-histidine is one of the essential amino acids for humans, and it plays a critical role as a component of proteins. L-histidine is also important as a precursor of histamine. Brain histamine is synthesized from L-histidine in the presence of histidine decarboxylase, which is expressed in histamine neurons. In the present study, we aimed to elucidate the importance of dietary L-histidine as a precursor of brain histamine and the histaminergic nervous system. C57BL/6J male mice at 8 wk of age were assigned to 2 different diets for at least 2 wk: the control (Con) diet (5.08 g L-histidine/kg diet) or the low L-histidine diet (LHD) (1.28 g L-histidine/kg diet). We measured the histamine concentration in the brain areas of Con diet-fed mice (Con group) and LHD-fed mice (LHD group). The histamine concentration was significantly lower in the LHD group [Con group vs. LHD group: histamine in cortex (means ± SEs): 13.9 ± 1.25 vs. 9.36 ± 0.549 ng/g tissue; P = 0.002]. Our in vivo microdialysis assays revealed that histamine release stimulated by high K(+) from the hypothalamus in the LHD group was 60% of that in the Con group (P = 0.012). However, the concentrations of other monoamines and their metabolites were not changed by the LHD. The open-field tests showed that the LHD group spent a shorter amount of time in the central zone (87.6 ± 14.1 vs. 50.0 ± 6.03 s/10 min; P = 0.019), and the light/dark box tests demonstrated that the LHD group spent a shorter amount of time in the light box (198 ± 8.19 vs. 162 ± 14.1 s/10 min; P = 0.048), suggesting that the LHD induced anxiety-like behaviors. However, locomotor activity, memory functions, and social interaction did not differ between the 2 groups. The results of the present study demonstrated that insufficient intake of histidine reduced the brain histamine content, leading to anxiety-like behaviors in the mice.


Subject(s)
Anxiety/physiopathology , Histamine/metabolism , Histidine/administration & dosage , Animals , Anxiety/etiology , Cerebral Cortex/metabolism , Diet , Histidine/deficiency , Hypothalamus/metabolism , Male , Mice , Mice, Inbred C57BL , Microdialysis , Neurons/metabolism
8.
Neuropharmacology ; 81: 188-94, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24530460

ABSTRACT

Histaminergic neurons are activated by histamine H(3) receptor (H(3)R) antagonists, increasing histamine and other neurotransmitters in the brain. The prototype H(3)R antagonist thioperamide increases locomotor activity and anxiety-like behaviours; however, the mechanisms underlying these effects have not been fully elucidated. This study aimed to determine the mechanism underlying H(3)R-mediated behavioural changes using a specific H(3)R antagonist, JNJ-10181457 (JNJ). First, we examined the effect of JNJ injection to mice on the concentrations of brain monoamines and their metabolites. JNJ exclusively increased N(τ)-methylhistamine, the metabolite of brain histamine used as an indicator of histamine release, suggesting that JNJ dominantly stimulates the release of histamine release but not of other monoamines. Next, we examined the mechanism underlying JNJ-induced behavioural changes using open-field tests and elevated zero maze tests. JNJ-induced increase in locomotor activity was inhibited by α-fluoromethyl histidine, an inhibitor of histamine synthesis, supporting that H(3)R exerted its effect through histamine neurotransmission. The JNJ-induced increase in locomotor activity in wild-type mice was preserved in H(1)R gene knockout mice but not in histamine H2 receptor (H(2)R) gene knockout mice. JNJ-induced anxiety-like behaviours were partially reduced by diphenhydramine, an H(1)R antagonist, and dominantly by zolantidine, an H(2)R antagonist. These results suggest that H(3)R blockade induces histamine release, activates H(2)R and elicits exploratory locomotor activity and anxiety-like behaviours.


Subject(s)
Anxiety/physiopathology , Exploratory Behavior/physiology , Receptors, Histamine H3/physiology , Animals , Anxiety/chemically induced , Anxiety/genetics , Biogenic Monoamines/metabolism , Brain/drug effects , Brain/metabolism , Disease Models, Animal , Enzyme Inhibitors/pharmacology , Exploratory Behavior/drug effects , Histamine/metabolism , Histamine Antagonists/toxicity , Male , Maze Learning/drug effects , Methylhistamines/metabolism , Methylhistidines/pharmacology , Mice , Mice, Inbred C57BL , Mice, Knockout , Morpholines/toxicity , Piperidines/toxicity , Receptors, Histamine H1/deficiency , Receptors, Histamine H1/genetics , Receptors, Histamine H2/deficiency , Receptors, Histamine H2/genetics
9.
J Neurochem ; 129(4): 591-601, 2014 May.
Article in English | MEDLINE | ID: mdl-24471494

ABSTRACT

Monoamine neurotransmitters should be immediately removed from the synaptic cleft to avoid excessive neuronal activity. Recent studies have shown that astrocytes and neurons are involved in monoamine removal. However, the mechanism of monoamine transport by astrocytes is not entirely clear. We aimed to elucidate the transporters responsible for monoamine transport in 1321N1, a human astrocytoma-derived cell line. First, we confirmed that 1321N1 cells transported dopamine, serotonin, norepinephrine, and histamine in a time- and dose-dependent manner. Kinetics analysis suggested the involvement of low-affinity monoamine transporters, such as organic cation transporter (OCT) 2 and 3 and plasma membrane monoamine transporter (PMAT). Monoamine transport in 1321N1 cells was not Na(+) /Cl(-) dependent but was inhibited by decynium-22, an inhibitor of low-affinity monoamine transporters, which supported the importance of low-affinity transporters. RT-PCR assays revealed that 1321N1 cells expressed OCT3 and PMAT but no other neurotransmitter transporters. Another human astrocytoma-derived cell line, U251MG, and primary human astrocytes also exhibited the same gene expression pattern. Gene-knockdown assays revealed that 1321N1 and primary human astrocytes could transport monoamines predominantly through PMAT and partly through OCT3. These results might indicate that PMAT and OCT3 in human astrocytes are involved in monoamine clearance.


Subject(s)
Astrocytes/metabolism , Biogenic Monoamines/metabolism , Equilibrative Nucleoside Transport Proteins/metabolism , Organic Cation Transport Proteins/metabolism , Astrocytoma/pathology , Biological Transport , Cell Line, Tumor , Gene Expression Profiling , Homeostasis , Humans , Models, Biological , RNA Interference , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...