Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 14(21)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34772123

ABSTRACT

We found that specific biomedical Ti and its alloys, such as CP Ti, Ti-29Nb-13Ta-4.6Zr, and Ti-36Nb-2Ta-3Zr-0.3O, form a bright white oxide layer after a particular oxidation heat treatment. In this paper, the interfacial microstructure of the oxide layer on Ti-29Nb-13Ta-4.6Zr and the exfoliation resistance of commercially pure (CP) Ti, Ti-29Nb-13Ta-4.6Zr, and Ti-36Nb-2Ta-3Zr-0.3O were investigated. The alloys investigated were oxidized at 1273 or 1323 K for 0.3-3.6 ks in an air furnace. The exfoliation stress of the oxide layer was high in Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O, and the maximum exfoliation stress was as high as 70 MPa, which is almost the same as the stress exhibited by epoxy adhesives, whereas the exfoliation stress of the oxide layer on CP Ti was less than 7 MPa, regardless of duration time. The nanoindentation hardness and frictional coefficients of the oxide layer on Ti-29Nb-13Ta-4.6Zr suggested that the oxide layer was hard and robust enough for artificial tooth coating. The cross-sectional transmission electron microscopic observations of the microstructure of oxidized Ti-29Nb-13Ta-4.6Zr revealed that a continuous oxide layer formed on the surface of the alloys. The Au marker method revealed that both in- and out-diffusion occur during oxidation in Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O, whereas only out-diffusion governs oxidation in CP Ti. The obtained results indicate that the high exfoliation resistance of the oxide layer on Ti-29Nb-13Ta-4.6Zr and Ti-36Nb-2Ta-3Zr-0.3O are attributed to their dense microstructures composing of fine particles, and a composition-graded interfacial microstructure. On the basis of the results of our microstructural observations, the oxide formation mechanism of the Ti-Nb-Ta-Zr alloy is discussed.

2.
Materials (Basel) ; 3(9): 4639-4656, 2010 Sep 08.
Article in English | MEDLINE | ID: mdl-28883345

ABSTRACT

Fabrication of Al-Al3Ti functionally graded materials (FGMs) under the centrifugal force has recently attracted some attention. The controlled compositional gradient of the fabricated FGMs, the low cost of the process, and the good mold filling, are the main advantages of the centrifugal method (CM). Using the conventional CM techniques such as the centrifugal solid-particle method and centrifugal in-situ method, FGMs rings with gradually distributed properties could be achieved. As a more practical choice, the centrifugal mixed-powder method (CMPM) was recently proposed to obtain FGMs containing nano-particles selectively dispersed in the outer surface of the fabricated parts. However, if a control of the particles morphology, compound formulas or sizes, is desired, another CM technique is favored. As a development of CMPM, our novel reaction centrifugal mixed-powder method (RCMPM) has been presented. Using RCMPM, Al­Al3Ti/Ti3Al FGMs with good surface properties and temperature controlled compositional gradient could be achieved. In this short review, this novel method will be discussed in detail and the effect of RCMPM processing temperature on the reinforcement particles morphology, size and distribution through the fabricated samples, will be reviewed.

SELECTION OF CITATIONS
SEARCH DETAIL
...