Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Cell ; 84(7): 1224-1242.e13, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38458201

ABSTRACT

Although mismatch repair (MMR) is essential for correcting DNA replication errors, it can also recognize other lesions, such as oxidized bases. In G0 and G1, MMR is kept in check through unknown mechanisms as it is error-prone during these cell cycle phases. We show that in mammalian cells, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins inhibit the proteasomal degradation of p21, which competes with MMR proteins for binding to PCNA, thereby inhibiting MMR. The ability of D-type cyclins to limit MMR is CDK4- and CDK6-independent and is conserved in G0 and G1. At the G1/S transition, the timely, cullin-RING ubiquitin ligase (CRL)-dependent degradation of D-type cyclins and p21 enables MMR activity to efficiently repair DNA replication errors. Persistent expression of D-type cyclins during S-phase inhibits the binding of MMR proteins to PCNA, increases the mutational burden, and promotes microsatellite instability.


Subject(s)
Cyclins , DNA Mismatch Repair , Animals , Cyclins/genetics , Proliferating Cell Nuclear Antigen/genetics , Proliferating Cell Nuclear Antigen/metabolism , Cyclin-Dependent Kinase Inhibitor p21/genetics , Interphase , Mammals/metabolism
2.
bioRxiv ; 2024 Jan 13.
Article in English | MEDLINE | ID: mdl-38260436

ABSTRACT

The large majority of oxidative DNA lesions occurring in the G1 phase of the cell cycle are repaired by base excision repair (BER) rather than mismatch repair (MMR) to avoid long resections that can lead to genomic instability and cell death. However, the molecular mechanisms dictating pathway choice between MMR and BER have remained unknown. Here, we show that, during G1, D-type cyclins are recruited to sites of oxidative DNA damage in a PCNA- and p21-dependent manner. D-type cyclins shield p21 from its two ubiquitin ligases CRL1SKP2 and CRL4CDT2 in a CDK4/6-independent manner. In turn, p21 competes through its PCNA-interacting protein degron with MMR components for their binding to PCNA. This inhibits MMR while not affecting BER. At the G1/S transition, the CRL4AMBRA1-dependent degradation of D-type cyclins renders p21 susceptible to proteolysis. These timely degradation events allow the proper binding of MMR proteins to PCNA, enabling the repair of DNA replication errors. Persistent expression of cyclin D1 during S-phase increases the mutational burden and promotes microsatellite instability. Thus, the expression of D-type cyclins inhibits MMR in G1, whereas their degradation is necessary for proper MMR function in S.

3.
Cell Death Differ ; 29(2): 285-292, 2022 02.
Article in English | MEDLINE | ID: mdl-34862481

ABSTRACT

The risk of zoonotic coronavirus spillover into the human population, as highlighted by the SARS-CoV-2 pandemic, demands the development of pan-coronavirus antivirals. The efficacy of existing antiviral ribonucleoside/ribonucleotide analogs, such as remdesivir, is decreased by the viral proofreading exonuclease NSP14-NSP10 complex. Here, using a novel assay and in silico modeling and screening, we identified NSP14-NSP10 inhibitors that increase remdesivir's potency. A model compound, sofalcone, both inhibits the exonuclease activity of SARS-CoV-2, SARS-CoV, and MERS-CoV in vitro, and synergistically enhances the antiviral effect of remdesivir, suppressing the replication of SARS-CoV-2 and the related human coronavirus OC43. The validation of top hits from our primary screenings using cellular systems provides proof-of-concept for the NSP14 complex as a therapeutic target.


Subject(s)
Adenosine Monophosphate/analogs & derivatives , Alanine/analogs & derivatives , Exoribonucleases/metabolism , SARS-CoV-2/drug effects , Viral Nonstructural Proteins/metabolism , Viral Regulatory and Accessory Proteins/metabolism , A549 Cells , Adenosine Monophosphate/pharmacology , Alanine/pharmacology , Antiviral Agents/pharmacology , Humans , SARS-CoV-2/enzymology , Virus Replication/drug effects
4.
J Vis Exp ; (170)2021 04 16.
Article in English | MEDLINE | ID: mdl-33938899

ABSTRACT

DNA damage repair maintains the genetic integrity of cells in a highly reactive environment. Cells may accumulate various types of DNA damage due to both endogenous and exogenous sources such as metabolic activities or UV radiation. Without DNA repair, the cell's genetic code becomes compromised, undermining the structures and functions of proteins and potentially causing disease. Understanding the spatiotemporal dynamics of the different DNA repair pathways in various cell cycle phases is crucial in the field of DNA damage repair. Current fluorescent microscopy techniques provide great tools to measure the recruitment kinetics of different repair proteins after DNA damage induction. DNA synthesis during the S phase of the cell cycle is a peculiar point in cell fate regarding DNA repair. It provides a unique window to screen the entire genome for mistakes. At the same time, DNA synthesis errors also pose a threat to DNA integrity that is not encountered in non-dividing cells. Therefore, DNA repair processes differ significantly in S phase as compared to other phases of the cell cycle, and those differences are poorly understood. The following protocol describes the preparation of cell lines and the measurement of dynamics of DNA repair proteins in S phase at locally induced DNA damage sites, using a laser-scanning confocal microscope equipped with a 405 nm laser line. Tagged PCNA (with mPlum) is used as a cell cycle marker combined with an AcGFP-labeled repair protein of interest (i.e., EXO1b) to measure the DNA damage recruitment in S phase.


Subject(s)
DNA Damage/genetics , DNA/genetics , Laser Therapy/methods , S Phase/genetics , Ultraviolet Therapy/methods , Humans
5.
Proc Natl Acad Sci U S A ; 118(17)2021 04 27.
Article in English | MEDLINE | ID: mdl-33827988

ABSTRACT

In order to understand the transmission and virulence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), it is necessary to understand the functions of each of the gene products encoded in the viral genome. One feature of the SARS-CoV-2 genome that is not present in related, common coronaviruses is ORF10, a putative 38-amino acid protein-coding gene. Proteomic studies found that ORF10 binds to an E3 ubiquitin ligase containing Cullin-2, Rbx1, Elongin B, Elongin C, and ZYG11B (CRL2ZYG11B). Since CRL2ZYG11B mediates protein degradation, one possible role for ORF10 is to "hijack" CRL2ZYG11B in order to target cellular, antiviral proteins for ubiquitylation and subsequent proteasomal degradation. Here, we investigated whether ORF10 hijacks CRL2ZYG11B or functions in other ways, for example, as an inhibitor or substrate of CRL2ZYG11B While we confirm the ORF10-ZYG11B interaction and show that the N terminus of ORF10 is critical for it, we find no evidence that ORF10 is functioning to inhibit or hijack CRL2ZYG11B Furthermore, ZYG11B and its paralog ZER1 are dispensable for SARS-CoV-2 infection in cultured cells. We conclude that the interaction between ORF10 and CRL2ZYG11B is not relevant for SARS-CoV-2 infection in vitro.


Subject(s)
COVID-19/metabolism , Cell Cycle Proteins/metabolism , Cullin Proteins/metabolism , Multiprotein Complexes/metabolism , Open Reading Frames , SARS-CoV-2/metabolism , Viral Proteins/metabolism , COVID-19/genetics , Cell Cycle Proteins/genetics , Cullin Proteins/genetics , HEK293 Cells , Humans , Multiprotein Complexes/genetics , SARS-CoV-2/genetics , Viral Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...