Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 27
Filter
Add more filters










Publication year range
1.
Sci Data ; 11(1): 361, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600091

ABSTRACT

Species assemblage composition of marine microfossils offers the possibility to investigate ecological and climatological change on time scales inaccessible using conventional observations. Planktonic foraminifera - calcareous zooplankton - have an excellent fossil record and are used extensively in palaeoecology and palaeoceanography. During the Last Glacial Maximum (LGM; 19,000 - 23,000 years ago), the climate was in a radically different state. This period is therefore a key target to investigate climate and biodiversity under different conditions than today. Studying LGM climate and ecosystems indeed has a long history, yet the most recent global synthesis of planktonic foraminifera assemblage composition is now nearly two decades old. Here we present the ForCenS-LGM dataset with 2,365 species assemblage samples collected using standardised methods and with harmonised taxonomy. The data originate from marine sediments from 664 sites and present a more than 50% increase in coverage compared to previous work. The taxonomy is compatible with the most recent global core top dataset, enabling direct investigation of temporal changes in foraminifera biogeography and facilitating seawater temperature reconstructions.


Subject(s)
Foraminifera , Fossils , Zooplankton , Animals , Biodiversity , Ecosystem
2.
Sci Data ; 10(1): 131, 2023 03 10.
Article in English | MEDLINE | ID: mdl-36899009

ABSTRACT

We present the first version of the Ocean Circulation and Carbon Cycling (OC3) working group database, of oxygen and carbon stable isotope ratios from benthic foraminifera in deep ocean sediment cores from the Last Glacial Maximum (LGM, 23-19 ky) to the Holocene (<10 ky) with a particular focus on the early last deglaciation (19-15 ky BP). It includes 287 globally distributed coring sites, with metadata, isotopic and chronostratigraphic information, and age models. A quality check was performed for all data and age models, and sites with at least millennial resolution were preferred. Deep water mass structure as well as differences between the early deglaciation and LGM are captured by the data, even though its coverage is still sparse in many regions. We find high correlations among time series calculated with different age models at sites that allow such analysis. The database provides a useful dynamical approach to map physical and biogeochemical changes of the ocean throughout the last deglaciation.


Subject(s)
Foraminifera , Seawater , Carbon Isotopes/analysis , Carbon , Oxygen
3.
Proc Natl Acad Sci U S A ; 120(7): e2208738120, 2023 02 14.
Article in English | MEDLINE | ID: mdl-36745804

ABSTRACT

Founding populations of the first Americans likely occupied parts of Beringia during the Last Glacial Maximum (LGM). The timing, pathways, and modes of their southward transit remain unknown, but blockage of the interior route by North American ice sheets between ~26 and 14 cal kyr BP (ka) favors a coastal route during this period. Using models and paleoceanographic data from the North Pacific, we identify climatically favorable intervals when humans could have plausibly traversed the Cordilleran coastal corridor during the terminal Pleistocene. Model simulations suggest that northward coastal currents strengthened during the LGM and at times of enhanced freshwater input, making southward transit by boat more difficult. Repeated Cordilleran glacial-calving events would have further challenged coastal transit on land and at sea. Following these events, ice-free coastal areas opened and seasonal sea ice was present along the Alaskan margin until at least 15 ka. Given evidence for humans south of the ice sheets by 16 ka and possibly earlier, we posit that early people may have taken advantage of winter sea ice that connected islands and coastal refugia. Marine ice-edge habitats offer a rich food supply and traversing coastal sea ice could have mitigated the difficulty of traveling southward in watercraft or on land over glaciers. We identify 24.5 to 22 ka and 16.4 to 14.8 ka as environmentally favorable time periods for coastal migration, when climate conditions provided both winter sea ice and ice-free summer conditions that facilitated year-round marine resource diversity and multiple modes of mobility along the North Pacific coast.


Subject(s)
Ecosystem , Fresh Water , Humans , North America , Human Migration , Oceans and Seas , Ice Cover
4.
Nature ; 611(7934): 74-80, 2022 11.
Article in English | MEDLINE | ID: mdl-36323809

ABSTRACT

North Pacific deoxygenation events during the last deglaciation were sustained over millennia by high export productivity, but the triggering mechanisms and their links to deglacial warming remain uncertain1-3. Here we find that initial deoxygenation in the North Pacific immediately after the Cordilleran ice sheet (CIS) retreat4 was associated with increased volcanic ash in seafloor sediments. Timing of volcanic inputs relative to CIS retreat suggests that regional explosive volcanism was initiated by ice unloading5,6. We posit that iron fertilization by volcanic ash7-9 during CIS retreat fuelled ocean productivity in this otherwise iron-limited region, and tipped the marine system towards sustained deoxygenation. We also identify older deoxygenation events linked to CIS retreat over the past approximately 50,000 years (ref. 4). Our findings suggest that the apparent coupling between the atmosphere, ocean, cryosphere and solid-Earth systems occurs on relatively short timescales and can act as an important driver for ocean biogeochemical change.


Subject(s)
Ice Cover , Oceans and Seas , Oxygen , Seawater , Volcanic Eruptions , Atmosphere/chemistry , Iron/analysis , Iron/metabolism , Oxygen/metabolism , Seawater/chemistry , Pacific Ocean
5.
Proc Natl Acad Sci U S A ; 119(8)2022 02 22.
Article in English | MEDLINE | ID: mdl-35165189

ABSTRACT

During the last deglaciation, dozens of glacial outburst floods-among the largest known floods on Earth-scoured the Channeled Scabland landscape of eastern Washington. Over this same period, deformation of the Earth's crust in response to the growth and decay of ice sheets changed the topography by hundreds of meters. Here, we investigated whether glacial isostatic adjustment affected routing of the Missoula floods and incision of the Channeled Scabland from an impounded, glacial Lake Columbia. We used modern topography corrected for glacial isostatic adjustment as an input to flood models that solved the depth-averaged, shallow water equations and compared the results to erosion constraints. Results showed that floods could have traversed and eroded parts of two major tracts of the Channeled Scabland-Telford-Crab Creek and Cheney-Palouse-near 18 ka, whereas glacial isostatic adjustment limited flow into the Cheney-Palouse tract at 15.5 ka. Partitioning of flow between tracts was governed by tilting of the landscape, which affected the filling and overspill of glacial Lake Columbia directly upstream of the tracts. These results highlight the impact of glacial isostatic adjustment on megaflood routing and landscape evolution.

6.
Science ; 370(6517): 716-720, 2020 11 06.
Article in English | MEDLINE | ID: mdl-33004677

ABSTRACT

New radiocarbon and sedimentological results from the Gulf of Alaska document recurrent millennial-scale episodes of reorganized Pacific Ocean ventilation synchronous with rapid Cordilleran Ice Sheet discharge, indicating close coupling of ice-ocean dynamics spanning the past 42,000 years. Ventilation of the intermediate-depth North Pacific tracks strength of the Asian monsoon, supporting a role for moisture and heat transport from low latitudes in North Pacific paleoclimate. Changes in carbon-14 age of intermediate waters are in phase with peaks in Cordilleran ice-rafted debris delivery, and both consistently precede ice discharge events from the Laurentide Ice Sheet, known as Heinrich events. This timing precludes an Atlantic trigger for Cordilleran Ice Sheet retreat and instead implicates the Pacific as an early part of a cascade of dynamic climate events with global impact.

7.
Nat Commun ; 11(1): 1826, 2020 04 14.
Article in English | MEDLINE | ID: mdl-32286283

ABSTRACT

The uncertain response of marine terminating outlet glaciers to climate change at time scales beyond short-term observation limits models of future sea level rise. At temperate tidewater margins, abundant subglacial meltwater forms morainal banks (marine shoals) or ice-contact deltas that reduce water depth, stabilizing grounding lines and slowing or reversing glacial retreat. Here we present a radiocarbon-dated record from Integrated Ocean Drilling Program (IODP) Site U1421 that tracks the terminus of the largest Alaskan Cordilleran Ice Sheet outlet glacier during Last Glacial Maximum climate transitions. Sedimentation rates, ice-rafted debris, and microfossil and biogeochemical proxies, show repeated abrupt collapses and slow advances typical of the tidewater glacier cycle observed in modern systems. When global sea level rise exceeded the local rate of bank building, the cycle of readvances stopped leading to irreversible retreat. These results support theory that suggests sediment dynamics can control tidewater terminus position on an open shelf under temperate conditions delaying climate-driven retreat.

8.
Sci Adv ; 6(9): eaay2915, 2020 Feb.
Article in English | MEDLINE | ID: mdl-32133399

ABSTRACT

Columbia River megafloods occurred repeatedly during the last deglaciation, but the impacts of this fresh water on Pacific hydrography are largely unknown. To reconstruct changes in ocean circulation during this period, we used a numerical model to simulate the flow trajectory of Columbia River megafloods and compiled records of sea surface temperature, paleo-salinity, and deep-water radiocarbon from marine sediment cores in the Northeast Pacific. The North Pacific sea surface cooled and freshened during the early deglacial (19.0-16.5 ka) and Younger Dryas (12.9-11.7 ka) intervals, coincident with the appearance of subsurface water masses depleted in radiocarbon relative to the sea surface. We infer that Pacific meltwater fluxes contributed to net Northern Hemisphere cooling prior to North Atlantic Heinrich Events, and again during the Younger Dryas stadial. Abrupt warming in the Northeast Pacific similarly contributed to hemispheric warming during the Bølling and Holocene transitions. These findings underscore the importance of changes in North Pacific freshwater fluxes and circulation in deglacial climate events.

9.
Nat Commun ; 9(1): 2104, 2018 05 29.
Article in English | MEDLINE | ID: mdl-29844384

ABSTRACT

Submarine glacial landforms in fjords are imprints of the dynamic behaviour of marine-terminating glaciers and are informative about their most recent retreat phase. Here we use detailed multibeam bathymetry to map glacial landforms in Petermann Fjord and Nares Strait, northwestern Greenland. A large grounding-zone wedge (GZW) demonstrates that Petermann Glacier stabilised at the fjord mouth for a considerable time, likely buttressed by an ice shelf. This stability was followed by successive backstepping of the ice margin down the GZW's retrograde backslope forming small retreat ridges to 680 m current depth (∼730-800 m palaeodepth). Iceberg ploughmarks occurring somewhat deeper show that thick, grounded ice persisted to these water depths before final breakup occurred. The palaeodepth limit of the recessional moraines is consistent with final collapse driven by marine ice cliff instability (MICI) with retreat to the next stable position located underneath the present Petermann ice tongue, where the seafloor is unmapped.

10.
Proc Natl Acad Sci U S A ; 113(13): 3465-70, 2016 Mar 29.
Article in English | MEDLINE | ID: mdl-26976561

ABSTRACT

An understanding of the mechanisms that control CO2 change during glacial-interglacial cycles remains elusive. Here we help to constrain changing sources with a high-precision, high-resolution deglacial record of the stable isotopic composition of carbon in CO2(δ(13)C-CO2) in air extracted from ice samples from Taylor Glacier, Antarctica. During the initial rise in atmospheric CO2 from 17.6 to 15.5 ka, these data demarcate a decrease in δ(13)C-CO2, likely due to a weakened oceanic biological pump. From 15.5 to 11.5 ka, the continued atmospheric CO2 rise of 40 ppm is associated with small changes in δ(13)C-CO2, consistent with a nearly equal contribution from a further weakening of the biological pump and rising ocean temperature. These two trends, related to marine sources, are punctuated at 16.3 and 12.9 ka with abrupt, century-scale perturbations in δ(13)C-CO2 that suggest rapid oxidation of organic land carbon or enhanced air-sea gas exchange in the Southern Ocean. Additional century-scale increases in atmospheric CO2 coincident with increases in atmospheric CH4 and Northern Hemisphere temperature at the onset of the Bølling (14.6-14.3 ka) and Holocene (11.6-11.4 ka) intervals are associated with small changes in δ(13)C-CO2, suggesting a combination of sources that included rising surface ocean temperature.

11.
Proc Natl Acad Sci U S A ; 112(49): 15042-7, 2015 Dec 08.
Article in English | MEDLINE | ID: mdl-26598689

ABSTRACT

Erosion, sediment production, and routing on a tectonically active continental margin reflect both tectonic and climatic processes; partitioning the relative importance of these processes remains controversial. Gulf of Alaska contains a preserved sedimentary record of the Yakutat Terrane collision with North America. Because tectonic convergence in the coastal St. Elias orogen has been roughly constant for 6 My, variations in its eroded sediments preserved in the offshore Surveyor Fan constrain a budget of tectonic material influx, erosion, and sediment output. Seismically imaged sediment volumes calibrated with chronologies derived from Integrated Ocean Drilling Program boreholes show that erosion accelerated in response to Northern Hemisphere glacial intensification (∼ 2.7 Ma) and that the 900-km-long Surveyor Channel inception appears to correlate with this event. However, tectonic influx exceeded integrated sediment efflux over the interval 2.8-1.2 Ma. Volumetric erosion accelerated following the onset of quasi-periodic (∼ 100-ky) glacial cycles in the mid-Pleistocene climate transition (1.2-0.7 Ma). Since then, erosion and transport of material out of the orogen has outpaced tectonic influx by 50-80%. Such a rapid net mass loss explains apparent increases in exhumation rates inferred onshore from exposure dates and mapped out-of-sequence fault patterns. The 1.2-My mass budget imbalance must relax back toward equilibrium in balance with tectonic influx over the timescale of orogenic wedge response (millions of years). The St. Elias Range provides a key example of how active orogenic systems respond to transient mass fluxes, and of the possible influence of climate-driven erosive processes that diverge from equilibrium on the million-year scale.

12.
Proc Natl Acad Sci U S A ; 112(2): 332-5, 2015 Jan 13.
Article in English | MEDLINE | ID: mdl-25453073

ABSTRACT

Understanding responses of oceanic primary productivity, carbon export, and burial to climate change is essential for model-based projection of biological feedbacks in a high-CO2 world. Here we compare estimates of productivity based on the composition of fossil diatom floras with organic carbon burial off Oregon in the Northeast Pacific across a large climatic transition at the last glacial termination. Although estimated primary productivity was highest during the Last Glacial Maximum, carbon burial was lowest, reflecting reduced preservation linked to low sedimentation rates. A diatom size index further points to a glacial decrease (and deglacial increase) in the fraction of fixed carbon that was exported, inferred to reflect expansion, and contraction, of subpolar ecosystems that today favor smaller plankton. Thus, in contrast to models that link remineralization of carbon to temperature, in the Northeast Pacific, we find dominant ecosystem and sea floor control such that intervals of warming climate had more efficient carbon export and higher carbon burial despite falling primary productivity.

13.
Science ; 345(6195): 444-8, 2014 Jul 25.
Article in English | MEDLINE | ID: mdl-25061208

ABSTRACT

Some proposed mechanisms for transmission of major climate change events between the North Pacific and North Atlantic predict opposing patterns of variations; others suggest synchronization. Resolving this conflict has implications for regulation of poleward heat transport and global climate change. New multidecadal-resolution foraminiferal oxygen isotope records from the Gulf of Alaska (GOA) reveal sudden shifts between intervals of synchroneity and asynchroneity with the North Greenland Ice Core Project (NGRIP) δ(18)O record over the past 18,000 years. Synchronization of these regions occurred 15,500 to 11,000 years ago, just prior to and throughout the most abrupt climate transitions of the last 20,000 years, suggesting that dynamic coupling of North Pacific and North Atlantic climates may lead to critical transitions in Earth's climate system.


Subject(s)
Ice , Alaska , Climate Change , Freezing , Greenland , Oxygen Isotopes/analysis , Pacific Ocean , Water Movements
14.
Science ; 339(6124): 1198-201, 2013 Mar 08.
Article in English | MEDLINE | ID: mdl-23471405

ABSTRACT

Surface temperature reconstructions of the past 1500 years suggest that recent warming is unprecedented in that time. Here we provide a broader perspective by reconstructing regional and global temperature anomalies for the past 11,300 years from 73 globally distributed records. Early Holocene (10,000 to 5000 years ago) warmth is followed by ~0.7°C cooling through the middle to late Holocene (<5000 years ago), culminating in the coolest temperatures of the Holocene during the Little Ice Age, about 200 years ago. This cooling is largely associated with ~2°C change in the North Atlantic. Current global temperatures of the past decade have not yet exceeded peak interglacial values but are warmer than during ~75% of the Holocene temperature history. Intergovernmental Panel on Climate Change model projections for 2100 exceed the full distribution of Holocene temperature under all plausible greenhouse gas emission scenarios.


Subject(s)
Global Warming/history , Models, Theoretical , Temperature , Global Warming/statistics & numerical data , History, 15th Century , History, 16th Century , History, 17th Century , History, 18th Century , History, 19th Century , History, 20th Century , History, 21st Century , History, Ancient , History, Medieval
15.
Nat Commun ; 3: 1219, 2012.
Article in English | MEDLINE | ID: mdl-23187619

ABSTRACT

Water resources in western North America depend on winter precipitation, yet our knowledge of its sensitivity to climate change remains limited. Similarly, understanding the potential for future loss of winter snow pack requires a longer perspective on natural climate variability. Here we use stable isotopes from a speleothem in southwestern Oregon to reconstruct winter climate change for much of the past 13,000 years. We find that on millennial time scales there were abrupt transitions between warm-dry and cold-wet regimes. Temperature and precipitation changes on multi-decadal to century timescales are consistent with ocean-atmosphere interactions that arise from mechanisms similar to the Pacific Decadal Oscillation. Extreme cold-wet and warm-dry events that punctuated the Holocene appear to be sensitive to solar forcing, possibly through the influence of the equatorial Pacific on the winter storm tracks reaching the US Pacific Northwest region.

16.
Nature ; 484(7392): 49-54, 2012 Apr 04.
Article in English | MEDLINE | ID: mdl-22481357

ABSTRACT

The covariation of carbon dioxide (CO(2)) concentration and temperature in Antarctic ice-core records suggests a close link between CO(2) and climate during the Pleistocene ice ages. The role and relative importance of CO(2) in producing these climate changes remains unclear, however, in part because the ice-core deuterium record reflects local rather than global temperature. Here we construct a record of global surface temperature from 80 proxy records and show that temperature is correlated with and generally lags CO(2) during the last (that is, the most recent) deglaciation. Differences between the respective temperature changes of the Northern Hemisphere and Southern Hemisphere parallel variations in the strength of the Atlantic meridional overturning circulation recorded in marine sediments. These observations, together with transient global climate model simulations, support the conclusion that an antiphased hemispheric temperature response to ocean circulation changes superimposed on globally in-phase warming driven by increasing CO(2) concentrations is an explanation for much of the temperature change at the end of the most recent ice age.


Subject(s)
Carbon Dioxide/analysis , Global Warming/statistics & numerical data , Ice Cover , Temperature , Antarctic Regions , Atmosphere/chemistry , Fossils , Geography , Geologic Sediments/chemistry , Greenland , History, Ancient , Models, Theoretical , Monte Carlo Method , Pollen , Seawater/analysis , Uncertainty
17.
Proc Natl Acad Sci U S A ; 109(19): E1134-42, 2012 May 08.
Article in English | MEDLINE | ID: mdl-22331892

ABSTRACT

Deciphering the evolution of global climate from the end of the Last Glacial Maximum approximately 19 ka to the early Holocene 11 ka presents an outstanding opportunity for understanding the transient response of Earth's climate system to external and internal forcings. During this interval of global warming, the decay of ice sheets caused global mean sea level to rise by approximately 80 m; terrestrial and marine ecosystems experienced large disturbances and range shifts; perturbations to the carbon cycle resulted in a net release of the greenhouse gases CO(2) and CH(4) to the atmosphere; and changes in atmosphere and ocean circulation affected the global distribution and fluxes of water and heat. Here we summarize a major effort by the paleoclimate research community to characterize these changes through the development of well-dated, high-resolution records of the deep and intermediate ocean as well as surface climate. Our synthesis indicates that the superposition of two modes explains much of the variability in regional and global climate during the last deglaciation, with a strong association between the first mode and variations in greenhouse gases, and between the second mode and variations in the Atlantic meridional overturning circulation.


Subject(s)
Climate , Global Warming , Ice Cover , Temperature , Atmosphere/analysis , Biological Evolution , Carbon Dioxide/metabolism , Ecosystem , Geography , Methane/metabolism , Models, Theoretical , Monte Carlo Method , Oxygen/metabolism , Principal Component Analysis , Seawater , Time Factors , Water Movements
18.
Talanta ; 89: 195-200, 2012 Jan 30.
Article in English | MEDLINE | ID: mdl-22284480

ABSTRACT

Microwave-assisted, hydrofluoric acid digestion is an increasingly common tool for the preparation of marine sediment samples for analysis by a variety of spectrometric techniques. Here we report that analysis of terrigenous-dominated sediment samples occasionally results in anomalously low values for several elements, including Al, Ba, Ca, Mg, and Sr. Measured concentrations of these elements increased with time between sample preparation and sample analysis, reaching stable values after 8-29 days. This lag is explained by the formation and subsequent dissolution of poorly soluble fluoride phases during digestion. Other elements, such as Fe, Mn, and Ti, showed little or no lag and were quickly measurable at a stable value. Full re-dissolution of the least soluble fluorides, which incorporate Al and Mg, requires up to four weeks at room temperature, and this duration can vary among sedimentary matrices. This waiting time can be reduced to 6 days (or shorter) if the samples are heated to ≈ 60°C for 24h.


Subject(s)
Fluorides/analysis , Geologic Sediments/chemistry , Hydrofluoric Acid/chemistry , Metals/analysis , Hot Temperature , Hydrolysis , Microwaves , Spectrophotometry, Atomic , Time Factors
19.
Science ; 334(6061): 1385-8, 2011 Dec 09.
Article in English | MEDLINE | ID: mdl-22116027

ABSTRACT

Assessing the impact of future anthropogenic carbon emissions is currently impeded by uncertainties in our knowledge of equilibrium climate sensitivity to atmospheric carbon dioxide doubling. Previous studies suggest 3 kelvin (K) as the best estimate, 2 to 4.5 K as the 66% probability range, and nonzero probabilities for much higher values, the latter implying a small chance of high-impact climate changes that would be difficult to avoid. Here, combining extensive sea and land surface temperature reconstructions from the Last Glacial Maximum with climate model simulations, we estimate a lower median (2.3 K) and reduced uncertainty (1.7 to 2.6 K as the 66% probability range, which can be widened using alternate assumptions or data subsets). Assuming that paleoclimatic constraints apply to the future, as predicted by our model, these results imply a lower probability of imminent extreme climatic change than previously thought.

20.
Rapid Commun Mass Spectrom ; 24(9): 1271-80, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20391598

ABSTRACT

The carbon isotopic composition (delta(13)C) of recently assimilated plant carbon is known to depend on water-stress, caused either by low soil moisture or by low atmospheric humidity. Air humidity has also been shown to correlate with the delta(13)C of soil respiration, which suggests indirectly that recently fixed photosynthates comprise a substantial component of substrates consumed by soil respiration. However, there are other reasons why the delta(13)CO(2) of soil efflux may change with moisture conditions, which have not received as much attention. Using a combination of greenhouse experiments and modeling, we examined whether moisture can cause changes in fractionation associated with (1) non-steady-state soil CO(2) transport, and (2) heterotrophic soil-respired delta(13)CO(2). In a first experiment, we examined the effects of soil moisture on total respired delta(13)CO(2) by growing Douglas fir seedlings under high and low soil moisture conditions. The measured delta(13)C of soil respiration was 4.7 per thousand more enriched in the low-moisture treatment; however, subsequent investigation with an isotopologue-based gas diffusion model suggested that this result was probably influenced by gas transport effects. A second experiment examined the heterotrophic component of soil respiration by incubating plant-free soils, and showed no change in microbial-respired delta(13)CO(2) across a large moisture range. Our results do not rule out the potential influence of recent photosynthates on soil-respired delta(13)CO(2), but they indicate that the expected impacts of photosynthetic discrimination may be similar in direction and magnitude to those from gas transport-related fractionation. Gas transport-related fractionation may operate as an alternative or an additional factor to photosynthetic discrimination to explain moisture-related variation in soil-respired delta(13)CO(2).

SELECTION OF CITATIONS
SEARCH DETAIL
...