Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1172004, 2023.
Article in English | MEDLINE | ID: mdl-37215141

ABSTRACT

Purpose: Though copy number variants (CNVs) have been suggested to play a significant role in inborn errors of immunity (IEI), the precise nature of this role remains largely unexplored. We sought to determine the diagnostic contribution of CNVs using genome-wide chromosomal microarray analysis (CMA) in children with IEI. Methods: We performed exome sequencing (ES) and CMA for 332 unrelated pediatric probands referred for evaluation of IEI. The analysis included primary, secondary, and incidental findings. Results: Of the 332 probands, 134 (40.4%) received molecular diagnoses. Of these, 116/134 (86.6%) were diagnosed by ES alone. An additional 15/134 (11.2%) were diagnosed by CMA alone, including two likely de novo changes. Three (2.2%) participants had diagnostic molecular findings from both ES and CMA, including two compound heterozygotes and one participant with two distinct diagnoses. Half of the participants with CMA contribution to diagnosis had CNVs in at least one non-immune gene, highlighting the clinical complexity of these cases. Overall, CMA contributed to 18/134 diagnoses (13.4%), increasing the overall diagnostic yield by 15.5% beyond ES alone. Conclusion: Pairing ES and CMA can provide a comprehensive evaluation to clarify the complex factors that contribute to both immune and non-immune phenotypes. Such a combined approach to genetic testing helps untangle complex phenotypes, not only by clarifying the differential diagnosis, but in some cases by identifying multiple diagnoses contributing to the overall clinical presentation.


Subject(s)
Chromosomes , Genetic Testing , Humans , Child , Exome Sequencing , Microarray Analysis , Phenotype
2.
J Clin Invest ; 132(2)2022 01 18.
Article in English | MEDLINE | ID: mdl-34847080

ABSTRACT

Functional gastrointestinal disorders (FGIDs) have prominent sex differences in incidence, symptoms, and treatment response that are not well understood. Androgens are steroid hormones present at much higher levels in males than females and could be involved in these differences. In adults with irritable bowel syndrome (IBS), a FGID that affects 5% to 10% of the population worldwide, we found that free testosterone levels were lower than those in healthy controls and inversely correlated with symptom severity. To determine how this diminished androgen signaling could contribute to bowel dysfunction, we depleted gonadal androgens in adult mice and found that this caused a profound deficit in gastrointestinal transit. Restoring a single androgen hormone was sufficient to rescue this deficit, suggesting that circulating androgens are essential for normal bowel motility in vivo. To determine the site of action, we probed androgen receptor expression in the intestine and discovered, unexpectedly, that a large subset of enteric neurons became androgen-responsive upon puberty. Androgen signaling to these neurons was required for normal colonic motility in adult mice. Taken together, these observations establish a role for gonadal androgens in the neural regulation of bowel function and link altered androgen levels with a common digestive disorder.


Subject(s)
Androgens/blood , Colon/metabolism , Gastrointestinal Motility , Irritable Bowel Syndrome/blood , Receptors, Androgen/biosynthesis , Adult , Animals , Colon/physiopathology , Female , Humans , Irritable Bowel Syndrome/metabolism , Irritable Bowel Syndrome/physiopathology , Male , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...