Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 105
Filter
Add more filters










Publication year range
1.
MethodsX ; 11: 102448, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38023308

ABSTRACT

The forest canopy harbors a diverse array of organisms. However, monitoring their biodiversity poses challenges due to limited accessibility and the vast taxonomic diversity. To address these challenges, we present a novel method for capturing arboreal biodiversity by harnessing stemflow as a source of DNA from organisms inhabiting trees. Our method involves encircling the tree trunk with gauze, directing the stemflow along the gauze into a funnel, and collecting it in a plastic bag. We employed dual collection systems to retrieve environmental DNA (eDNA) from the stemflow: the gauze trap, designed to capture macroscopic biological fragments, and the plastic bag trap, which collected the stemflow itself. The trapped fragments and stemflow were separately filtered, and eDNA was subsequently extracted from the filter membranes. To validate our method, we focused on foliose lichens, which are easily observable on tree surfaces. We performed eDNA metabarcoding and successfully detected a majority of the observed foliose lichen species, including those not identified through visual observation alone.•We have developed a non-invasive and straightforward method for monitoring arboreal biodiversity by collecting eDNA from stemflow, which has been validated using lichens for its efficacy.•This cost-effective approach minimizes disruptions to tree ecosystems and is expected to provide an efficient means of sampling and monitoring arboreal organisms.

2.
Elife ; 122023 07 11.
Article in English | MEDLINE | ID: mdl-37431235

ABSTRACT

The effects of temperature on interaction strengths are important for understanding and forecasting how global climate change impacts marine ecosystems; however, tracking and quantifying interactions of marine fish species are practically difficult especially under field conditions, and thus, how temperature influences their interaction strengths under field conditions remains poorly understood. We herein performed quantitative fish environmental DNA (eDNA) metabarcoding on 550 seawater samples that were collected twice a month from 11 coastal sites for 2 years in the Boso Peninsula, Japan, and analyzed eDNA monitoring data using nonlinear time series analytical tools. We detected fish-fish interactions as information flow between eDNA time series, reconstructed interaction networks for the top 50 frequently detected species, and quantified pairwise, fluctuating interaction strengths. Although there was a large variation, water temperature influenced fish-fish interaction strengths. The impact of water temperature on interspecific interaction strengths varied among fish species, suggesting that fish species identity influences the temperature effects on interactions. For example, interaction strengths that Halichoeres tenuispinis and Microcanthus strigatus received strongly increased with water temperature, while those of Engraulis japonicus and Girella punctata decreased with water temperature. An increase in water temperature induced by global climate change may change fish interactions in a complex way, which consequently influences marine community dynamics and stability. Our research demonstrates a practical research framework to study the effects of environmental variables on interaction strengths of marine communities in nature, which would contribute to understanding and predicting natural marine ecosystem dynamics.


The world's oceans are home to tens of thousands of fish species, many of which live in nutrient-rich coastal waters. Different species living in a particular environment interact with each other in many ways. For example, a predatory fish may prey on some species of small fish but avoid feeding on others that help it by removing parasites from its skin. Rising ocean temperatures caused by global climate change could affect how different fish species interact with one another and, as a result, impact their communities. One of the first steps to understanding how fish interact with each other in nature typically requires researchers to count the number of different species present and observe how they behave, which is time-consuming and labor-intensive. An alternative is to use an emerging technique in which researchers extract DNA from water, soil or air ­ known as environmental DNA ­ and analyze it to identify the species present and estimate their numbers. Ushio et al. analyzed hundreds of samples of seawater that had been collected over a two-year period from the Boso Peninsula in Japan. Statistical methods were used to quantify how strongly fish species interact with each other and determine whether the temperature of the water influenced how different species of fish interacted over time. The findings showed that water temperature had a significant but complex effect on how strongly pairs of fish species interacted, with both positive and negative effects depending on the conditions. The impact of water temperature on the strength of the interactions varied between species, for example, Japanese anchovy and largescale blackfish interacted less strongly with other fish species in warmer water, whereas the Stripey and a species of wrasse interacted with other fish species more strongly. The findings provide new insights into how water temperature affects the communities of fish living in coastal areas. Alongside complementing existing knowledge in the field, refining the research framework used in this work will benefit those working in fishery science by providing valuable insights into how natural and commercially important fish species respond to climate change.


Subject(s)
Ecosystem , Fishes , Animals , Temperature , Climate Change , Water
3.
Mol Biol Evol ; 40(3)2023 03 04.
Article in English | MEDLINE | ID: mdl-36857197

ABSTRACT

MitoFish, MitoAnnotator, and MiFish Pipeline are comprehensive databases of fish mitochondrial genomes (mitogenomes), accurate annotation software of fish mitogenomes, and a web platform for metabarcoding analysis of fish mitochondrial environmental DNA (eDNA), respectively. The MitoFish Suite currently receives over 48,000 visits worldwide every year; however, the performance and usefulness of the online platforms can still be improved. Here, we present essential updates on these platforms, including an enrichment of the reference data sets, an enhanced searching function, substantially faster genome annotation and eDNA analysis with the denoising of sequencing errors, and a multisample comparative analysis function. These updates have made our platform more intuitive, effective, and reliable. These updated platforms are freely available at http://mitofish.aori.u-tokyo.ac.jp/.


Subject(s)
DNA, Mitochondrial , Genome, Mitochondrial , Animals , Databases, Factual , Mitochondria , Software
4.
Funct Integr Genomics ; 23(2): 96, 2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36947319

ABSTRACT

Many studies have investigated the ability of environmental DNA (eDNA) to identify the species. However, when individual species are to be identified, accurate estimation of their abundance using traditional eDNA analyses is still difficult. We previously developed a novel analytical method called HaCeD-Seq (haplotype count from eDNA by sequencing), which focuses on the mitochondrial D-loop sequence for eels and tuna. In this study, universal D-loop primers were designed to enable the comprehensive detection of multiple fish species by a single sequence. To sequence the full-length D-loop with high accuracy, we performed nanopore sequencing with unique molecular identifiers (UMI). In addition, to determine the D-loop reference sequence, whole genome sequencing was performed with thin coverage, and complete mitochondrial genomes were determined. We developed a UMI-based Nanopore D-loop sequencing analysis pipeline and released it as open-source software. We detected 5 out of 15 species (33%) and 10 haplotypes out of 35 individuals (29%) among the detected species. This study demonstrates the possibility of comprehensively obtaining information related to population size from eDNA. In the future, this method can be used to improve the accuracy of fish resource estimation, which is currently highly dependent on fishing catches.


Subject(s)
DNA, Environmental , Animals , Pilot Projects , Whole Genome Sequencing , Software , Sequence Analysis, DNA/methods
5.
MethodsX ; 9: 101838, 2022.
Article in English | MEDLINE | ID: mdl-36117674

ABSTRACT

Filtration is required during the collection of trace amounts of environmental DNA (eDNA) from water samples to achieve a concentration sufficient for downstream molecular experiments. To date, collected water samples have been filtered by humans or electric power using various instruments. We developed a simple gravity filtration system that does not need for an external force. The system comprises a plastic bag filled with a water sample (1 L), a filter cartridge, and a long plastic tube (e.g., 2 m). When hung at a height equal to the tube length, this filtration unit can enable power-free collection and concentration of eDNA at any remote location within a reasonable time (10-60 min).•A simple, rapid, power-free, practical filtration system for environmental DNA analysis is reported.•If there is a place to hang the filtration system, filtration can be performed anywhere.•The filtration speed increased when the system was hung higher.

6.
Ann Rev Mar Sci ; 14: 161-185, 2022 01 03.
Article in English | MEDLINE | ID: mdl-34351788

ABSTRACT

Environmental DNA (eDNA) is genetic material that has been shed from macroorganisms. It has received increased attention as an indirect marker for biodiversity monitoring. This article reviews the current status of eDNA metabarcoding (simultaneous detection of multiple species) as a noninvasive and cost-effective approach for monitoring marine fish communities and discusses the prospects for this growing field. eDNA metabarcoding coamplifies short fragments of fish eDNA across a wide variety of taxa and, coupled with high-throughput sequencing technologies, allows massively parallel sequencing to be performed simultaneously for dozens to hundreds of samples. It can predict species richness in a given area, detect habitat segregation and biogeographic patterns from small to large spatial scales, and monitor the spatiotemporal dynamics of fish communities. In addition, it can detect an anthropogenic impact on fish communities through evaluation of their functional diversity. Recognizing the strengths and limitations of eDNA metabarcoding will help ensure that continuous biodiversity monitoring at multiple sites will be useful for ecosystem conservation and sustainable use of fishery resources, possibly contributing to achieving the targets of the United Nations' Sustainable Development Goal 14 for 2030.


Subject(s)
DNA, Environmental , Animals , Biodiversity , DNA Barcoding, Taxonomic/methods , DNA, Environmental/genetics , Ecosystem , Environmental Monitoring/methods , Fishes/genetics
7.
MethodsX ; 8: 101238, 2021.
Article in English | MEDLINE | ID: mdl-34434761

ABSTRACT

Analyses of environmental DNA (eDNA) from macroorganisms in aquatic environments have greatly advanced in recent years. In particular, eDNA metabarcoding of fish using universal PCR primers has been reported in various waters. Although pumped deep-sea water was used for eDNA metabarcoding of deep-sea fish, conventional methods only resulted in small amounts of extracted eDNA and subsequent few or no PCR amplicons. To optimize eDNA metabarcoding of deep-sea fish from pumped deep-sea water, we modified conventional procedures of eDNA extraction and PCR amplification. Here, we propose a modified eDNA extraction method, in which a filter used for eDNA sampling was shredded and incubated in microtubes for efficient lysis of eDNA sources. Total eDNA yield extracted using the modified protocol was approximately six-fold higher than that extracted by the conventional protocol. The PCR enzyme Platinum SuperFi II DNA Polymerase successfully amplified a target region of fish universal primers (MiFish) from trace amounts of eDNA extracted from pumped deep-sea water and suppressed nonspecific amplifications more effectively than the enzyme used in conventional methods. Approximately 93% of the sequence reads acquired by next generation sequencing of these amplicons were derived from fish. The improved procedure presented here provided effective eDNA metabarcoding of deep-sea fish.•A modified eDNA extraction protocol, in which a filter was shredded and incubated in microtubes, increased eDNA yields extracted from pumped deep-sea water over the conventional method.•The PCR enzyme Platinum SuperFi II DNA polymerase improved the amplification efficiency of trace amounts of MiFish objectives in eDNA extracted from pumped deep-sea water with suppressing nonspecific amplifications.•The use of Platinum SuperFi II DNA polymerase for eDNA metabarcoding using MiFish primers resulted in the acquisition of abundant sequence reads of deep-sea fish through next generation sequencing.

8.
Syst Biol ; 70(6): 1123-1144, 2021 10 13.
Article in English | MEDLINE | ID: mdl-33783539

ABSTRACT

The use of high-throughput sequencing technologies to produce genome-scale data sets was expected to settle some long-standing controversies across the Tree of Life, particularly in areas where short branches occur at deep timescales. Instead, these data sets have often yielded many well-supported but conflicting topologies, and highly variable gene-tree distributions. A variety of branch-support metrics beyond the nonparametric bootstrap are now available to assess how robust a phylogenetic hypothesis may be, as well as new methods to quantify gene-tree discordance. We applied multiple branch-support metrics to a study of an ancient group of marine fishes (Teleostei: Pelagiaria) whose interfamilial relationships have proven difficult to resolve due to a rapid accumulation of lineages very early in its history. We analyzed hundreds of loci including published ultraconserved elements and newly generated exonic data along with their flanking regions to represent all 16 extant families for more than 150 out of 284 valid species in the group. Branch support was typically lower at inter- than intra-familial relationships regardless of the type of marker used. Several nodes that were highly supported with bootstrap had a very low site and gene-tree concordance, revealing underlying conflict. Despite this conflict, we were able to identify four consistent interfamilial clades, each comprised of two or three families. Combining exons with their flanking regions also produced increased branch lengths at the deep branches of the pelagiarian tree. Our results demonstrate the limitations of employing current metrics of branch support and species-tree estimation when assessing the confidence of ancient evolutionary radiations and emphasize the necessity to embrace alternative measurements to explore phylogenetic uncertainty and discordance in phylogenomic data sets.[Concatenation; exons; introns; phylogenomics; species-tree methods; target capture.].


Subject(s)
Benchmarking , Tuna , Animals , Biological Evolution , Fishes , Humans , Phylogeny
9.
Sci Rep ; 11(1): 2490, 2021 01 25.
Article in English | MEDLINE | ID: mdl-33495481

ABSTRACT

A novel species of the family Alepocephalidae (slickheads), Narcetes shonanmaruae, is described based on four specimens collected at depths greater than 2171 m in Suruga Bay, Japan. Compared to other alepocephalids, this species is colossal (reaching ca. 140 cm in total length and 25 kg in body weight) and possesses a unique combination of morphological characters comprising anal fin entirely behind the dorsal fin, multiserial teeth on jaws, more scale rows than congeners, precaudal vertebrae less than 30, seven branchiostegal rays, two epurals, and head smaller than those of relatives. Mitogenomic analyses also support the novelty of this large deep-sea slickhead. Although most slickheads are benthopelagic or mesopelagic feeders of gelatinous zooplankton, behavioural observations and dietary analyses indicate that the new species is piscivorous. In addition, a stable nitrogen isotope analysis of specific amino acids showed that N. shonanmaruae occupies one of the highest trophic positions reported from marine environments to date. Video footage recorded using a baited camera deployed at a depth of 2572 m in Suruga Bay revealed the active swimming behaviour of this slickhead. The scavenging ability and broad gape of N. shonanmaruae might be correlated with its colossal body size and relatively high trophic position.


Subject(s)
Bays , Perciformes/physiology , Predatory Behavior/physiology , Swimming/physiology , Amino Acids/metabolism , Animals , Geography , Isotope Labeling , Japan , Perciformes/anatomy & histology , Phylogeny , Stomach
10.
PLoS One ; 15(10): e0231127, 2020.
Article in English | MEDLINE | ID: mdl-33022692

ABSTRACT

Biodiversity is an important parameter for the evaluation of the extant environmental conditions. Here, we used environmental DNA (eDNA) metabarcoding to investigate fish biodiversity in five different estuaries in Japan. Water samples for eDNA were collected from river mouths and adjacent coastal areas of two estuaries with high degrees of development (the Tama and Miya Rivers) and three estuaries with relatively low degrees of development (the Aka, Takatsu, and Sendai Rivers). A total of 182 fish species across 67 families were detected. Among them, 11 species occurred in all the rivers studied. Rare fishes including endangered species were successfully detected in rich natural rivers. Biodiversity was the highest in the Sendai River and lowest in the Tama River, reflecting the degree of human development along each river. Even though nutrient concentration was low in both the Aka and Sendai Rivers, the latter exhibited greater diversity, including many tropical or subtropical species, owing to its more southern location. Species composition detected by eDNA varied among rivers, reflecting the distribution and migration of fishes. Our results are in accordance with the ecology of each fish species and environmental conditions of each river.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA, Environmental/analysis , Fishes/classification , Animals , Biodiversity , Environmental Monitoring/methods , Estuaries , Fishes/genetics , Human Activities , Japan , Phylogeny , Rivers
11.
Ecol Evol ; 10(12): 5354-5367, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32607158

ABSTRACT

Environmental DNA (eDNA) analysis has seen rapid development in the last decade, as a novel biodiversity monitoring method. Previous studies have evaluated optimal strategies, at several experimental steps of eDNA metabarcoding, for the simultaneous detection of fish species. However, optimal sampling strategies, especially the season and the location of water sampling, have not been evaluated thoroughly. To identify optimal sampling seasons and locations, we performed sampling monthly or at two-monthly intervals throughout the year in three dam reservoirs. Water samples were collected from 15 and nine locations in the Miharu and Okawa dam reservoirs in Fukushima Prefecture, respectively, and five locations in the Sugo dam reservoir in Hyogo Prefecture, Japan. One liter of water was filtered with glass-fiber filters, and eDNA was extracted. By performing MiFish metabarcoding, we successfully detected a total of 21, 24, and 22 fish species in Miharu, Okawa, and Sugo reservoirs, respectively. From these results, the eDNA metabarcoding method had a similar level of performance compared to conventional long-term data. Furthermore, it was found to be effective in evaluating entire fish communities. The number of species detected by eDNA survey peaked in May in Miharu and Okawa reservoirs, and in March and June in Sugo reservoir, which corresponds with the breeding seasons of many of fish species inhabiting the reservoirs. In addition, the number of detected species was significantly higher in shore, compared to offshore samples in the Miharu reservoir, and a similar tendency was found in the other two reservoirs. Based on these results, we can conclude that the efficiency of species detection by eDNA metabarcoding could be maximized by collecting water from shore locations during the breeding seasons of the inhabiting fish. These results will contribute in the determination of sampling seasons and locations for fish fauna survey via eDNA metabarcoding, in the future.

12.
Mol Ecol Resour ; 20(5): 1248-1258, 2020 Sep.
Article in English | MEDLINE | ID: mdl-32293104

ABSTRACT

Environmental DNA (eDNA) analysis has recently been used as a new tool for estimating intraspecific diversity. However, whether known haplotypes contained in a sample can be detected correctly using eDNA-based methods has been examined only by an aquarium experiment. Here, we tested whether the haplotypes of Ayu fish (Plecoglossus altivelis altivelis) detected in a capture survey could also be detected from an eDNA sample derived from the field that contained various haplotypes with low concentrations and foreign substances. A water sample and Ayu specimens collected from a river on the same day were analysed by eDNA analysis and Sanger sequencing, respectively. The 10 L water sample was divided into 20 filters for each of which 15 PCR replications were performed. After high-throughput sequencing, denoising was performed using two of the most widely used denoising packages, unoise3 and dada2. Of the 42 haplotypes obtained from the Sanger sequencing of 96 specimens, 38 (unoise3) and 41 (dada2) haplotypes were detected by eDNA analysis. When dada2 was used, except for one haplotype, haplotypes owned by at least two specimens were detected from all the filter replications. Accordingly, although it is important to note that eDNA-based method has some limitations and some risk of false positive and false negative, this study showed that the eDNA analysis for evaluating intraspecific genetic diversity provides comparable results for large-scale capture-based conventional methods. Our results suggest that eDNA-based methods could become a more efficient survey method for investigating intraspecific genetic diversity in the field.


Subject(s)
DNA, Environmental , Genetic Variation , Osmeriformes/genetics , Animals , High-Throughput Nucleotide Sequencing , Rivers , Sequence Analysis, DNA
13.
Proc Biol Sci ; 286(1910): 20191502, 2019 09 11.
Article in English | MEDLINE | ID: mdl-31506051

ABSTRACT

The fish clade Pelagiaria, which includes tunas as its most famous members, evolved remarkable morphological and ecological variety in a setting not generally considered conducive to diversification: the open ocean. Relationships within Pelagiaria have proven elusive due to short internodes subtending major lineages suggestive of rapid early divergences. Using a novel sequence dataset of over 1000 ultraconserved DNA elements (UCEs) for 94 of the 286 species of Pelagiaria (more than 70% of genera), we provide a time-calibrated phylogeny for this widely distributed clade. Some inferred relationships have clear precedents (e.g. the monophyly of 'core' Stromateoidei, and a clade comprising 'Gempylidae' and Trichiuridae), but others are unexpected despite strong support (e.g. Chiasmodontidae + Tetragonurus). Relaxed molecular clock analysis using node-based fossil calibrations estimates a latest Cretaceous origin for Pelagiaria, with crown-group families restricted to the Cenozoic. Estimated mean speciation rates decline from the origin of the group in the latest Cretaceous, although credible intervals for root and tip rates are broad and overlap in most cases, and there is higher-than-expected partitioning of body shape diversity (measured as fineness ratio) between clades concentrated during the Palaeocene-Eocene. By contrast, more direct measures of ecology show either no substantial deviation from a null model of diversification (diet) or patterns consistent with evolutionary constraint or high rates of recent change (depth habitat). Collectively, these results indicate a mosaic model of diversification. Pelagiarians show high morphological disparity and modest species richness compared to better-studied fish radiations in contrasting environments. However, this pattern is also apparent in other clades in open-ocean or deep-sea habitats, and suggests that comparative study of such groups might provide a more inclusive model of the evolution of diversity in fishes.


Subject(s)
Fishes , Phylogeny , Animals , Biodiversity , Biological Evolution , Ecosystem , Fossils , Genetic Speciation , Oceans and Seas , Tuna
14.
Sci Rep ; 9(1): 7977, 2019 05 28.
Article in English | MEDLINE | ID: mdl-31138865

ABSTRACT

Freshwater eels of the genus Anguilla comprise 16 species that include three subspecies and are characterized by their unique catadromous life cycles. Their life histories and nocturnal life styles make it difficult to observe them in freshwater and marine habitats. To investigate their distribution and ecology in aquatic environments, we developed new PCR primers for metabarcoding environmental DNA (eDNA) from Anguilla. The new primers (MiEel) were designed for two conserved regions of the mitochondrial ATP6 gene, which amplify a variable region with sufficient interspecific variations ranging from five to 22 nucleotide differences (one to three nucleotide differences between three subspecies pairs). We confirmed the versatility of the MiEel primers for all freshwater eels using tissue DNA extracts when analyzed separately. The metabarcoding combined with the MiEel primers using mock communities enabled simultaneous detection of Anguilla at the species level. Analysis of eDNA samples from aquarium tanks, a controlled pond and natural rivers demonstrated that the MiEel metabarcoding could successfully detect the correct Anguilla species from water samples. These results suggested that eDNA metabarcoding with MiEel primers would be useful for non-invasively monitoring the presence of the endangered anguillid eels in aquatic environments where sampling surveys are difficult.


Subject(s)
Anguilla/genetics , DNA Primers/metabolism , DNA, Environmental/genetics , Mitochondrial Proton-Translocating ATPases/genetics , Polymerase Chain Reaction/methods , Anguilla/classification , Animal Distribution/physiology , Animals , DNA Barcoding, Taxonomic/methods , DNA Primers/chemical synthesis , Fresh Water/analysis , Japan , Phylogeny , Seawater/analysis
15.
Sci Rep ; 9(1): 3581, 2019 03 05.
Article in English | MEDLINE | ID: mdl-30837589

ABSTRACT

Environmental DNA (eDNA) metabarcoding is a recently developed method to assess biodiversity based on a high-throughput parallel DNA sequencing applied to DNA present in the ecosystem. Although eDNA metabarcoding enables a rapid assessment of biodiversity, it is prone to species detection errors that may occur at sequential steps in field sampling, laboratory experiments, and bioinformatics. In this study, we illustrate how the error rates in the eDNA metabarcoding-based species detection can be accounted for by applying the multispecies occupancy modelling framework. We report a case study with the eDNA sample from an aquarium tank in which the detection probabilities of species in the two major steps of eDNA metabarcoding, filtration and PCR, across a range of PCR annealing temperatures, were examined. We also show that the results can be used to examine the efficiency of species detection under a given experimental design and setting, in terms of the efficiency of species detection, highlighting the usefulness of the multispecies site occupancy modelling framework to study the optimum conditions for molecular experiments.


Subject(s)
DNA Barcoding, Taxonomic/methods , DNA/analysis , DNA/genetics , Polymerase Chain Reaction/methods , Water/chemistry , Animals , Probability
16.
PLoS One ; 13(7): e0199982, 2018.
Article in English | MEDLINE | ID: mdl-30044814

ABSTRACT

Deep-sea midwater "saccopharyngiform" eels of the families Cyematidae, Monognathidae, Eurypharyngidae and Saccopharyngidae (order Anguilliformes) are extraordinary fishes having major skeletal reductions and modifications compared to the general anguilliform body structure. Little is known about most aspects of the systematics, phylogeny, and ecology of these families, and few of the approximately 30 species described from adult specimens have been matched with their leptotocephalus larvae. Based on mitogenomic sequence data from rare new specimens, we show that the long-speculated-about larval form referred to as "Leptocephalus holti", which was thought to possibly be the larva of the rare orange-colored eels of Neocyema (5 known specimens; speculated to belong to the Cyematidae) are actually the larvae of the one-jaw eels of the family Monognathidae. One of the 5 types of L. holti larvae that were collected in the Pacific is genetically matched with Monognathus jesperseni, but multiple species exist based on larval sequence data and the morphology of adult specimens. A rare leptocephalus from the Sargasso Sea, with unique morphological characteristics including many small orange spots on the gut, was found to be the larva of Neocyema, which is presently only known from the Atlantic Ocean. We demonstrate that Neocyema constitutes a separate family being most closely related to Eurypharyngidae and Saccopharyngidae based on mitogenomic DNA sequences and unique mitochondrial gene orders.


Subject(s)
Eels/genetics , Gene Order , Genes, Mitochondrial/genetics , Larva/genetics , Animals
17.
Mol Biol Evol ; 35(6): 1553-1555, 2018 06 01.
Article in English | MEDLINE | ID: mdl-29668970

ABSTRACT

Fish mitochondrial genome (mitogenome) data form a fundamental basis for revealing vertebrate evolution and hydrosphere ecology. Here, we report recent functional updates of MitoFish, which is a database of fish mitogenomes with a precise annotation pipeline MitoAnnotator. Most importantly, we describe implementation of MiFish pipeline for metabarcoding analysis of fish mitochondrial environmental DNA, which is a fast-emerging and powerful technology in fish studies. MitoFish, MitoAnnotator, and MiFish pipeline constitute a key platform for studies of fish evolution, ecology, and conservation, and are freely available at http://mitofish.aori.u-tokyo.ac.jp/ (last accessed April 7th, 2018).


Subject(s)
DNA Barcoding, Taxonomic , Fishes/genetics , Genome, Mitochondrial , Animals
18.
Sci Rep ; 8(1): 4493, 2018 03 14.
Article in English | MEDLINE | ID: mdl-29540790

ABSTRACT

Birds play unique functional roles in the maintenance of ecosystems, such as pollination and seed dispersal, and thus monitoring bird species diversity is a first step towards avoiding undesirable consequences of anthropogenic impacts on bird communities. In the present study, we hypothesized that birds, regardless of their main habitats, must have frequent contact with water and that tissues that contain their DNA that persists in the environment (environmental DNA; eDNA) could be used to detect the presence of avian species. To this end, we applied a set of universal PCR primers (MiBird, a modified version of fish/mammal universal primers) for metabarcoding avian eDNA. We confirmed the versatility of MiBird primers by performing in silico analyses and by amplifying DNAs extracted from bird tissues. Analyses of water samples from zoo cages of birds with known species composition suggested that the use of MiBird primers combined with Illumina MiSeq could successfully detect avian species from water samples. Additionally, analysis of water samples collected from a natural pond detected five avian species common to the sampling areas. The present findings suggest that avian eDNA metabarcoding would be a complementary detection/identification tool in cases where visual census of bird species is difficult.


Subject(s)
Birds/classification , Birds/genetics , DNA , Animals , Biodiversity , Computational Biology/methods , DNA Barcoding, Taxonomic , Metagenomics/methods , Phylogeny
19.
Mol Phylogenet Evol ; 124: 172-180, 2018 07.
Article in English | MEDLINE | ID: mdl-29526805

ABSTRACT

The Pelagia is a recently delineated group of fishes, comprising fifteen families formerly placed in six perciform suborders. The Pelagia was lately recognized as it encompasses huge morphological diversity and only in the last few years have large-scale molecular phylogenetic studies been undertaken that could unite such morphologically disparate lineages. Due to the recent erection of Pelagia, the composition of the taxon is not entirely certain. Five families of the former perciform suborder Stromateoidei have been identified as pelagians. However, the sixth stromateoid subfamily Amarsipidae is a rare monotypic family that has distinctive meristic and morphological characteristics from that of other stromateoids such as the lack of a pharyngeal sac. We examine molecular data generated from the sole species in Amarsipidae, Amarsipus carlsbergi, and demonstrate that it is clearly nested within Pelagia. As with two previous studies that have the breadth of sampling to evaluate pelagian intra-relationships, we find high support for monophyly of most family-level taxonomic units but statistical support for early-branching nodes in the pelagian tree is very low. We conduct the first analyses of Pelagia incorporating the multispecies coalescent and are limited by a high degree of missing loci, or, incomplete taxon sampling. The high degree of missing data across a complete sampling of pelagian lineages along with the deep time scale and rapid radiation of the lineage contribute to poor resolution of early-branching relationships within Pelagia that cannot be resolved with current data sets. Currently available data are either mitochondrial genomes or a super matrix of relatively few loci with a high degree of missing data. A new and independent dataset of numerous phylogenetic loci derived from high-throughput sequencing technology may reduce uncertainty within the Pelagia and provide insights into this adaptive radiation.


Subject(s)
Fishes/classification , Fishes/genetics , Genetic Loci , Phylogeny , Animals , Base Sequence , Likelihood Functions , Sequence Alignment , Sequence Analysis, DNA
20.
PLoS One ; 12(7): e0181329, 2017.
Article in English | MEDLINE | ID: mdl-28753660

ABSTRACT

The anchovy genus Encrasicholina is an important coastal marine resource of the tropical Indo-West Pacific (IWP) region for which insufficient comparative data are available to evaluate the effects of current exploitation levels on the sustainability of its species and populations. Encrasicholina currently comprises nine valid species that are morphologically very similar. Only three, Encrasicholina punctifer, E. heteroloba, and E. pseudoheteroloba, occur in the Northwest Pacific subregion of the northeastern part of the IWP region. These species are otherwise broadly distributed and abundant in the IWP region, making them the most important anchovy species for local fisheries. In this study, we reconstructed the phylogeny of these three species of Encrasicholina within the Engraulidae. We sequenced 10 complete mitochondrial genomes (using high-throughput and Sanger DNA sequencing technologies) and compared those sequences to 21 previously published mitochondrial genomes from various engraulid taxa. The phylogenetic results showed that the genus Encrasicholina is monophyletic, and it is the sister group to the more-diverse "New World anchovy" clade. The mitogenome-based dating results indicated that the crown group Encrasicholina originated about 33.7 million years ago (nearby the limit Eocene/Oligocene), and each species of Encrasicholina has been reproductively isolated from the others for more than 20 million years, despite their morphological similarities. In contrast, preliminary population genetic analyses across the Northwest Pacific region using four mitogenomic sequences revealed very low levels of genetic differentiation within Encrasicholina punctifer. These molecular results combined with recent taxonomic revisions are important for designing further studies on the population structure and phylogeography of these anchovies.


Subject(s)
Fishes/genetics , Animals , Evolution, Molecular , Fishes/classification , Genetics, Population , Genome, Mitochondrial/genetics , Northwestern United States , Phylogeny , Phylogeography
SELECTION OF CITATIONS
SEARCH DETAIL
...