Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Noncoding RNA Res ; 9(3): 887-900, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38616862

ABSTRACT

In the intricate field of cancer biology, researchers are increasingly intrigued by the emerging role of exosomal long non-coding RNAs (lncRNAs) due to their multifaceted interactions, complex modulation mechanisms, and potential therapeutic applications. These exosomal lncRNAs, carried within extracellular vesicles, play a vital partin tumorigenesis and disease progression by facilitating communication networks between tumor cells and their local microenvironment, making them an ideal candidates for use in a liquid biopsy approach. However, exosomal lncRNAs remain an understudied area, especially in cancer biology. Therefore this review aims to comprehensively explore the dynamic interplay between exosomal lncRNAs and various cellular components, including interactions with tumor-stroma, immune modulation, and drug resistance mechanisms. Understanding the regulatory functions of exosomal lncRNAs in these processes can potentially unveil novel diagnostic markers and therapeutic targets for cancer. Additionally, the emergence of RNA-based therapeutics presents exciting opportunities for targeting exosomal lncRNAs, offering innovative strategies to combat cancer progression and improve treatment outcomes. Thus, this review provides insights into the current understanding of exosomal lncRNAs in cancer biology, highlighting their crucial roles, regulatory mechanisms, and the evolving landscape of therapeutic interventions. Furthermore, we have also discussed the advantage of exosomes as therapeutic carriers of lncRNAs for the development of personalized targeted therapy for cancer patients.

2.
Cancers (Basel) ; 15(16)2023 Aug 14.
Article in English | MEDLINE | ID: mdl-37627114

ABSTRACT

Prostate cancer (PCa) continues to be the most diagnosed cancer and the second primary cause of fatalities in men globally. There is an abundance of scientific evidence suggesting that the human microbiome, together with its metabolites, plays a crucial role in carcinogenesis and has a significant impact on the efficacy of anticancer interventions in solid and hematological cancers. These anticancer interventions include chemotherapy, immune checkpoint inhibitors, and targeted therapies. Furthermore, the microbiome can influence systemic and local immune responses using numerous metabolites such as short-chain fatty acids (SCFAs). Despite the lack of scientific data in terms of the role of SCFAs in PCa pathogenesis, recent studies show that SCFAs have a profound impact on PCa progression. Several studies have reported racial/ethnic disparities in terms of bacterial content in the gut microbiome and SCFA composition. These studies explored microbiome and SCFA racial/ethnic disparities in cancers such as colorectal, colon, cervical, breast, and endometrial cancer. Notably, there are currently no published studies exploring microbiome/SCFA composition racial disparities and their role in PCa carcinogenesis. This review discusses the potential role of the microbiome in PCa development and progression. The involvement of microbiome-derived SCFAs in facilitating PCa carcinogenesis and their effect on PCa therapeutic response, particularly immunotherapy, are discussed. Racial/ethnic differences in microbiome composition and SCFA content in various cancers are also discussed. Lastly, the effects of SCFAs on PCa progression via epigenetic modifications is also discussed.

3.
Vaccine ; 39(48): 7028-7035, 2021 11 26.
Article in English | MEDLINE | ID: mdl-34740476

ABSTRACT

Live oral rotavirus vaccines have significantly reduced rotavirus-related diarrheal morbidity and mortality globally, but low efficacy of these vaccines is observed in low-income countries where disease burden is highest. The biological basis of rotavirus vaccine failure remains unknown but likely includes both microbial and host factors. We investigated associations between 19 candidate SNPs in the TLR3, TLR7, TLR8, DDX58 and IFIH1 genes that play a role in innate immunity, and seroconversion in Black South African infants after vaccination with Rotarix at 6 and 14 weeks of age. Rotavirus-specific IgA antibody titre was measured by ELISA before each vaccine dose and four weeks after the second dose, and seroconversion was defined as a four-fold or greater increase in IgA antibody titre at 18 weeks of age when compared to pre-vaccine titres. A total of 95/138 individuals seroconverted (68.8%) and seroconversion was significantly affected by birthweight (P = 0.010), pre-vaccine IgA and IgG titres (P = 0.0002 and P = 0.007 respectively). rs2159377 SNP in TLR8 was significantly associated with seroconversion in a univariate allelic model (P = 0.015) and was borderline significant in a multivariable logistic regression adjusted for birthweight and pre-vaccine titres (P = 0.071), although these values did not remain significant after Bonferroni correction. A haplotype of six SNPs on the X chromosome across TLR7 and TLR8, including rs179008 and rs5935438 minor alleles, was significantly associated with seroconversion in a univariate model (P = 0.042), but not in a multivariable model or after Bonferroni correction. Epistatic interaction between rs5743305 in TLR3 and rs55789327 in DDX58 was significantly associated with seroconversion (P = 0.034) but a genetic risk score constructed from all 19 minor alleles was not. Our results suggest that TLR variants may influence IgA antibody production and seroconversion to Rotarix vaccine in South Africans. Host genetic variation contributes to the varying immunogenicity of live oral rotavirus vaccines.


Subject(s)
Rotavirus Infections , Rotavirus Vaccines , Rotavirus , Antibodies, Viral , Genetic Variation , Humans , Immunoglobulin A , Infant , Rotavirus Infections/prevention & control , Seroconversion , Vaccines, Attenuated
SELECTION OF CITATIONS
SEARCH DETAIL
...