Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Inform ; 6: 59-75, 2008.
Article in English | MEDLINE | ID: mdl-19259404

ABSTRACT

We report a method, Expression-Microarray Copy Number Analysis (ECNA) for the detection of copy number changes using Affymetrix Human Genome U133 Plus 2.0 arrays, starting with as little as 5 ng input genomic DNA. An analytical approach was developed using DNA isolated from cell lines containing various X-chromosome numbers, and validated with DNA from cell lines with defined deletions and amplifications in other chromosomal locations. We applied this method to examine the copy number changes in DNA from 5 frozen gastrointestinal stromal tumors (GIST). We detected known copy number aberrations consistent with previously published results using conventional or BAC-array CGH, as well as novel changes in GIST tumors. These changes were concordant with results from Affymetrix 100K human SNP mapping arrays. Gene expression data for these GIST samples had previously been generated on U133A arrays, allowing us to explore correlations between chromosomal copy number and RNA expression levels. One of the novel aberrations identified in the GIST samples, a previously unreported gain on 1q21.1 containing the PEX11B gene, was confirmed in this study by FISH and was also shown to have significant differences in expression pattern when compared to a control sample. In summary, we have demonstrated the use of gene expression microarrays for the detection of genomic copy number aberrations in tumor samples. This method may be used to study copy number changes in other species for which RNA expression arrays are available, e.g. other mammals, plants, etc., and for which SNPs have not yet been mapped.

2.
Methods Enzymol ; 410: 3-28, 2006.
Article in English | MEDLINE | ID: mdl-16938544

ABSTRACT

The intent of this chapter is to provide the reader with a review of GeneChip technology and the complete system it represents, including its versatility, components, and the exciting applications that are enabled by this platform. The following aspects of the technology are reviewed: array design and manufacturing, target preparation, instrumentation, data analysis, and both current and future applications. There are key differentiators between Affymetrix' GeneChip technology and other microarray-based methods. The most distinguishing feature of GeneChip microarrays is that their manufacture is directed by photochemical synthesis. Because of this manufacturing technology, more than a million different probes can be synthesized on an array roughly the size of a thumbnail. These numbers allow the inclusion of multiple probes to interrogate the same target sequence, providing statistical rigor to data interpretation. Over the years the GeneChip platform has proven to be a reliable and robust system, enabling many new discoveries and breakthroughs to be made by the scientific community.


Subject(s)
Oligonucleotide Array Sequence Analysis/instrumentation , Oligonucleotide Array Sequence Analysis/methods , Animals , Humans
3.
Proc Natl Acad Sci U S A ; 100(14): 8484-9, 2003 Jul 08.
Article in English | MEDLINE | ID: mdl-12815109

ABSTRACT

Pseudomonas aeruginosa is a ubiquitous environmental bacterium capable of causing a variety of life-threatening human infections. The genetic basis for preferential infection of certain immunocompromised patients or individuals with cystic fibrosis by P. aeruginosa is not understood. To establish whether variation in the genomic repertoire of P. aeruginosa strains can be associated with a particular type of infection, we used a whole-genome DNA microarray to determine the genome content of 18 strains isolated from the most common human infections and environmental sources. A remarkable conservation of genes including those encoding nearly all known virulence factors was observed. Phylogenetic analysis of strain-specific genes revealed no correlation between genome content and infection type. Clusters of strain-specific genes in the P. aeruginosa genome, termed variable segments, appear to be preferential sites for the integration of novel genetic material. A specialized cloning vector was developed for capture and analysis of these genomic segments. With this capture system a site associated with the strain-specific ExoU cytotoxin-encoding gene was interrogated and an 80-kb genomic island carrying exoU was identified. These studies demonstrate that P. aeruginosa strains possess a highly conserved genome that encodes genes important for survival in numerous environments and allows it to cause a variety of human infections. The acquisition of novel genetic material, such as the exoU genomic island, through horizontal gene transfer may enhance colonization and survival in different host environments.


Subject(s)
Genome, Bacterial , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/genetics , Virulence/genetics , Water Microbiology , Bacterial Proteins/genetics , DNA, Bacterial/genetics , Fresh Water , Gene Expression Profiling , Gene Transfer, Horizontal , Genetic Vectors/genetics , Humans , Oligonucleotide Array Sequence Analysis , Phylogeny , Pseudomonas aeruginosa/pathogenicity , Recombination, Genetic , Saccharomyces cerevisiae/genetics , Transformation, Genetic , Washington
SELECTION OF CITATIONS
SEARCH DETAIL
...