Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Biopolymers ; 91(11): 895-906, 2009 Nov.
Article in English | MEDLINE | ID: mdl-19585561

ABSTRACT

Nanoporous sol-gel glasses were used as host materials for the encapsulation of apomyoglobin, a model protein employed to probe in a rational manner the important factors that influence the protein conformation and stability in silica-based materials. The transparent glasses were prepared from tetramethoxysilane (TMOS) and modified with a series of mono-, di- and tri-substituted alkoxysilanes, R(n)Si(OCH(3))(4-n) (R = methyl-, n = 1; 2; 3) of different molar content (5, 10, 15%) to obtain the decrease of the siloxane linkage (-Si-O-Si-). The conformation and thermal stability of apomyoglobin characterized by circular dichroism spectroscopy (CD) was related to the structure of the silica host matrix characterized by (29)Si MAS NMR and N(2) adsorption. We observed that the protein transits from an unfolded state in unmodified glass (TMOS) to a native-like helical state in the organically modified glasses, but also that the secondary structure of the protein was enhanced by the decrease of the siloxane network with the methyl modification (n = 0 < n = 1 < n = 2 < n = 3; 0 < 5 < 10 < 15 mol %). In 15% trimethyl-modified glass, the protein even reached a maximum molar helicity (-24,000 deg. cm(2) mol(-1)) comparable to the stable folded heme-bound holoprotein in solution. The protein conformation and stability induced by the change of its microlocal environment (surface hydration, crowding effects, microstructure of the host matrix) were discussed owing to this trend dependency. These results can have an important impact for the design of new efficient biomaterials (sensors or implanted devices) in which properly folded protein is necessary.


Subject(s)
Apoproteins/chemistry , Glass/chemistry , Myoglobin/chemistry , Nanocomposites/chemistry , Organosilicon Compounds/chemistry , Silicon Compounds/chemistry , Animals , Biocompatible Materials/chemical synthesis , Biocompatible Materials/chemistry , Chemical Phenomena , Horses , Organosilicon Compounds/chemical synthesis , Phase Transition , Porosity , Protein Conformation , Protein Folding , Protein Stability , Silanes/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...