Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem ; 50: 116459, 2021 11 15.
Article in English | MEDLINE | ID: mdl-34700240

ABSTRACT

An aromatic substituent has been introduced into a known hydroxyethylamine (HEA)-type BACE1 inhibitor containing the superior substrate sequence to enhance inhibitory activity. The HEA-type isosteres bearing different hydroxyl group and methyl group configurations were prepared through a branched synthesis approach using intra- and inter-molecular epoxide opening reactions. The effect of their configuration was evaluated, showing that an R-configuration improved the inhibitory activity, while introduction of a methyl group on the isostere decreased the activity. Based on the non-substituted isostere with an R-configuration, 21 derivatives containing various substituents at the P1' site were synthesized. Our evaluation of the derivatives showed that the structure of the P1' site had a clear effect on activity, and highly potent inhibitor 40g, which showed sub-micromolar activity against recombinant BACE1 (rBACE1), was identified. The docking simulation of 40g with rBACE1 suggested that a carboxymethyl group at the para-position of the P1' benzene ring interacted with Lys285 in the S1' pocket.


Subject(s)
Enzyme Inhibitors/pharmacology , Ethylamines/pharmacology , Amyloid Precursor Protein Secretases , Aspartic Acid Endopeptidases , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Ethylamines/chemical synthesis , Ethylamines/chemistry , Humans , Molecular Structure , Recombinant Proteins , Structure-Activity Relationship
2.
Int J Comput Assist Radiol Surg ; 8(1): 75-86, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22585461

ABSTRACT

PURPOSE: We are currently developing a neurosurgical robotic system that facilitates access to residual tumors and improves brain tumor removal surgical outcomes. The system combines conventional and robotic surgery allowing for a quick conversion between the procedures. This concept requires a new master console that can be positioned at the surgical bedside and be sterilized. METHODS: The master console was developed using new technologies, such as a parallel mechanism and pneumatic sensors. The parallel mechanism is a purely passive 5-DOF (degrees of freedom) joystick based on the author's haptic research. The parallel mechanism enables motion input of conventional brain tumor removal surgery with a compact, intuitive interface that can be used in a conventional surgical environment. In addition, the pneumatic sensors implemented on the mechanism provide an intuitive interface and electrically isolate the tool parts from the mechanism so they can be easily sterilized. RESULTS: The 5-DOF parallel mechanism is compact (17 cm width, 19cm depth, and 15cm height), provides a 505,050 mm and 90° workspace and is highly backdrivable (0.27N of resistance force representing the surgical motion). The evaluation tests revealed that the pneumatic sensors can properly measure the suction strength, grasping force, and hand contact. In addition, an installability test showed that the master console can be used in a conventional surgical environment. CONCLUSION: The proposed master console design was shown to be feasible for operative neurosurgery based on comprehensive testing. This master console is currently being tested for master-slave control with a surgical robotic system.


Subject(s)
Neurosurgical Procedures/methods , Point-of-Care Systems , Robotics/instrumentation , Stereotaxic Techniques/instrumentation , User-Computer Interface , Equipment Design , Humans , Software , Surgery, Computer-Assisted
SELECTION OF CITATIONS
SEARCH DETAIL
...