Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Microbiol ; 88(1): 140-55, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23421703

ABSTRACT

In the yeast Saccharomyces cerevisiae, glycosylphosphatidylinositol (GPI)-anchored proteins play important roles in cell wall biogenesis/assembly and the formation of lipid microdomains. The lipid moieties of mature GPI-anchored proteins in yeast typically contain either ceramide moieties or diacylglycerol. Recent studies have identified that the GPI phospholipase A2 Per1p and O-acyltransferase Gup1p play essential roles in diacylglycerol-type lipid remodelling of GPI-anchored proteins, while Cwh43p is involved in the remodelling of lipid moieties to ceramide. It has been generally proposed that phosphatidylinositol with diacylglycerol containing a C26 saturated fatty acid, which is generated by the sequential activity of Per1p and Gup1p, is converted to inositolphosphoryl-ceramide by Cwh43p. In this report, we constructed double-mutant strains defective in lipid remodelling and investigated their growth phenotypes and the lipid moieties of GPI-anchored proteins. Based on our analyses of single- and double-mutants of proteins involved in lipid remodelling, we demonstrate that an alternative pathway, in which lyso-phosphatidylinositol generated by Per1p is used as a substrate for Cwh43p, is involved in the remodelling of GPI lipid moieties to ceramide when the normal sequential pathway is inhibited. In addition, mass spectrometric analysis of lipid species of Flag-tagged Gas1p revealed that Gas1p contains ceramide moieties in its GPI anchor.


Subject(s)
Glycosylphosphatidylinositols/metabolism , Lipid Metabolism , Metabolic Networks and Pathways , Saccharomyces cerevisiae/physiology , Biocatalysis/drug effects , Biological Transport/drug effects , Cell Membrane/drug effects , Cell Membrane/metabolism , Culture Media/pharmacology , Detergents/pharmacology , Glycosylphosphatidylinositols/chemistry , Lipid Metabolism/drug effects , Metabolic Networks and Pathways/drug effects , Mutation/genetics , Phenotype , Saccharomyces cerevisiae/cytology , Saccharomyces cerevisiae/drug effects , Saccharomyces cerevisiae/growth & development , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Tryptophan/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...