Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; : 129848, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876176

ABSTRACT

We explored novel immunosuppressive agents with immune tolerance using a phenotypic drug discovery strategy, focusing on costimulatory molecules in T cells, and obtained triazolothienodiazepine derivatives. Their mechanism of action is to inhibit the bromodomain and extra-terminal domain (BET) family, as we have previously reported. Selective inhibition of the first bromodomain (BD1) of the BET family is expected to exert antitumor and immunosuppressive effects, similar to BET inhibitors. This study identified furopyridine derivatives 7 and 8 with high BD1 inhibitory activity and high selectivity over BD2. Compound 7 was found to be orally bioavailable and exhibited anti-inflammatory activity in a lipopolysaccharide-induced model.

2.
Bioorg Med Chem Lett ; 109: 129849, 2024 Jun 12.
Article in English | MEDLINE | ID: mdl-38876177

ABSTRACT

Clinical studies have shown that inhibitors of bromodomain and extra-terminal domain (BET) proteins, particularly BRD4, have antitumor activity and efficacy. The BET protein has two domains, BD1 and BD2, and we previously focused on BD1 and reported orally bioavailable BD1-selective inhibitors. In this study, we obtained a BD1 inhibitor, a more potent and highly selective pyrazolopyridone derivative 13a, and confirmed its in vivo efficacy.

3.
Nat Struct Mol Biol ; 31(1): 159-169, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38057552

ABSTRACT

Sodium-glucose cotransporter 2 (SGLT2) is imporant in glucose reabsorption. SGLT2 inhibitors suppress renal glucose reabsorption, therefore reducing blood glucose levels in patients with type 2 diabetes. We and others have developed several SGLT2 inhibitors starting from phlorizin, a natural product. Using cryo-electron microscopy, we present the structures of human (h)SGLT2-MAP17 complexed with five natural or synthetic inhibitors. The four synthetic inhibitors (including canagliflozin) bind the transporter in the outward conformations, while phlorizin binds it in the inward conformation. The phlorizin-hSGLT2 interaction exhibits biphasic kinetics, suggesting that phlorizin alternately binds to the extracellular and intracellular sides. The Na+-bound outward-facing and unbound inward-open structures of hSGLT2-MAP17 suggest that the MAP17-associated bundle domain functions as a scaffold, with the hash domain rotating around the Na+-binding site. Thus, Na+ binding stabilizes the outward-facing conformation, and its release promotes state transition to inward-open conformation, exhibiting a role of Na+ in symport mechanism. These results provide structural evidence for the Na+-coupled alternating-access mechanism proposed for the transporter family.


Subject(s)
Diabetes Mellitus, Type 2 , Sodium-Glucose Transporter 2 Inhibitors , Humans , Sodium-Glucose Transporter 2 Inhibitors/pharmacology , Sodium-Glucose Transporter 2/metabolism , Glucose Transport Proteins, Facilitative , Phlorhizin/pharmacology , Phlorhizin/chemistry , Phlorhizin/metabolism , Cryoelectron Microscopy , Glucose/metabolism
4.
Sci Rep ; 11(1): 23599, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880321

ABSTRACT

Low-resolution electron density maps can pose a major obstacle in the determination and use of protein structures. Herein, we describe a novel method, called quality assessment based on an electron density map (QAEmap), which evaluates local protein structures determined by X-ray crystallography and could be applied to correct structural errors using low-resolution maps. QAEmap uses a three-dimensional deep convolutional neural network with electron density maps and their corresponding coordinates as input and predicts the correlation between the local structure and putative high-resolution experimental electron density map. This correlation could be used as a metric to modify the structure. Further, we propose that this method may be applied to evaluate ligand binding, which can be difficult to determine at low resolution.


Subject(s)
Proteins/chemistry , Crystallography, X-Ray/methods , Machine Learning , Neural Networks, Computer
5.
Biochem Biophys Res Commun ; 434(2): 191-6, 2013 May 03.
Article in English | MEDLINE | ID: mdl-23501107

ABSTRACT

In recent years, various dipeptidyl peptidase IV (DPP-4) inhibitors have been released as therapeutic drugs for type 2 diabetes in many countries. In spite of their diverse chemical structures, no comparative studies of their binding modes in the active site of DPP-4 have been disclosed. We determined the co-crystal structure of vildagliptin with DPP-4 by X-ray crystallography and compared the binding modes of six launched inhibitors in DPP-4. The inhibitors were categorized into three classes on the basis of their binding subsites: (i) vildagliptin and saxagliptin (Class 1) form interactions with the core S1 and S2 subsites and a covalent bond with Ser630 in the catalytic triad; (ii) alogliptin and linagliptin (Class 2) form interactions with the S1' and/or S2' subsites in addition to the S1 and S2 subsites; and (iii) sitagliptin and teneligliptin (Class 3) form interactions with the S1, S2 and S2 extensive subsites. The present study revealed that the additional interactions with the S1', S2' or S2 extensive subsite may increase DPP-4 inhibition beyond the level afforded by the fundamental interactions with the S1 and S2 subsites and are more effective than forming a covalent bond with Ser630.


Subject(s)
Adamantane/analogs & derivatives , Catalytic Domain , Dipeptidyl Peptidase 4/chemistry , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Nitriles/chemistry , Pyrrolidines/chemistry , Adamantane/chemistry , Crystallography, X-Ray , Dipeptides/chemistry , Humans , Multiprotein Complexes/analysis , Multiprotein Complexes/chemistry , Oligopeptides/chemistry , Piperidines/chemistry , Protein Binding , Protein Interaction Mapping , Pyrazines/chemistry , Pyrazoles/chemistry , Serine/chemistry , Sitagliptin Phosphate , Structure-Activity Relationship , Thiazolidines/chemistry , Triazoles/chemistry , Uracil/analogs & derivatives , Uracil/chemistry , Vildagliptin , X-Ray Diffraction
6.
Bioorg Med Chem ; 20(19): 5705-19, 2012 Oct 01.
Article in English | MEDLINE | ID: mdl-22959556

ABSTRACT

Dipeptidyl peptidase IV (DPP-4) inhibition is suitable mechanism for once daily oral dosing regimen because of its low risk of hypoglycemia. We explored linked bicyclic heteroarylpiperazines substituted at the γ-position of the proline structure in the course of the investigation of l-prolylthiazolidines. The efforts led to the discovery of a highly potent, selective, long-lasting and orally active DPP-4 inhibitor, 3-[(2S,4S)-4-[4-(3-methyl-1-phenyl-1H-pyrazol-5-yl)piperazin-1-yl]pyrrolidin-2-ylcarbonyl]thiazolidine (8 g), which has a unique structure characterized by five consecutive rings. An X-ray co-crystal structure of 8 g in DPP-4 demonstrated that the key interaction between the phenyl ring on the pyrazole and the S(2) extensive subsite of DPP-4 not only boosted potency, but also increased selectivity. Compound 8 g, at 0.03 mg/kg or higher doses, significantly inhibited the increase of plasma glucose levels after an oral glucose load in Zucker fatty rats. Compound 8 g (teneligliptin) has been approved for the treatment of type 2 diabetes in Japan.


Subject(s)
Diabetes Mellitus, Type 2/drug therapy , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/therapeutic use , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/therapeutic use , Pyrazoles/chemistry , Pyrazoles/therapeutic use , Thiazolidines/chemistry , Thiazolidines/therapeutic use , Animals , Blood Glucose/metabolism , Crystallography, X-Ray , Diabetes Mellitus, Type 2/enzymology , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/pharmacokinetics , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Glucose Tolerance Test , Haplorhini , Humans , Hypoglycemic Agents/pharmacokinetics , Hypoglycemic Agents/pharmacology , Male , Molecular Docking Simulation , Pyrazoles/pharmacokinetics , Pyrazoles/pharmacology , Rats , Rats, Wistar , Rats, Zucker , Thiazolidines/pharmacokinetics , Thiazolidines/pharmacology
7.
Bioorg Med Chem ; 20(16): 5033-41, 2012 Aug 15.
Article in English | MEDLINE | ID: mdl-22824762

ABSTRACT

Hypoglycemic agents with a mechanism of depeptidyl peptidase IV (DPP-4) inhibition are suitable for once daily oral dosing. It is difficult to strike a balance between inhibitory activity and duration of action in plasma for inhibitors bearing an electrophilic nitrile group. We explored fused bicyclic heteroarylpiperazine substituted at the γ-position of the proline structure in the investigation of L-prolylthiazolidines lacking the electrophilic nitrile. Among them, 2-trifluoroquinolyl compound 8g is the most potent, long-lasting DPP-4 inhibitor (IC(50) = 0.37 nmol/L) with high selectivity against other related peptidases. X-ray crystal structure determination of 8g indicates that CH-π interactions generated between the quinolyl ring and the guanidinyl group of Arg358 enhances the DPP-4 inhibitory activity and selectivity.


Subject(s)
Bridged Bicyclo Compounds/chemistry , Dipeptidyl Peptidase 4/metabolism , Dipeptidyl-Peptidase IV Inhibitors/chemistry , Dipeptidyl-Peptidase IV Inhibitors/pharmacology , Nitriles/chemistry , Piperazines/chemistry , Proline/analogs & derivatives , Proline/chemical synthesis , Proline/pharmacology , Thiazolidines/chemical synthesis , Thiazolidines/pharmacology , Animals , Crystallography, X-Ray , Dipeptidyl Peptidase 4/blood , Dipeptidyl-Peptidase IV Inhibitors/chemical synthesis , Dose-Response Relationship, Drug , Humans , Male , Models, Molecular , Molecular Structure , Proline/chemistry , Rats , Rats, Wistar , Structure-Activity Relationship , Thiazolidines/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...