Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18414, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891205

ABSTRACT

Using a pump-probe technique, the reflectivity of a silicon grating surface irradiated with intense femtosecond (fs) laser pulses was measured as a function of the incidence angle and the delay time between pulses. After irradiating the surface with an intense s-polarized, 400 nm, 300 fs laser pulse, the reflectivity measured with a weak p-polarized, 800 nm, 100 fs laser pulse exhibited an abrupt decrease for an incidence angle of ~ 24°. The depth of the dip was greatest for a delay time of 0.6-10 ps, for which the reflectivity around the dip was highest. The surface was also found to be ablated most strongly for the conditions causing the deepest dip for a delay time of 5-10 ps. Surface plasmon polaritons (SPPs) on silicon metallized by the intense pulse are resonantly excited by the subsequent pulse, and the strong coherent coupling between the subsequent pulse and SPPs excited on the molten Si surface produced by high-density free electrons induces strong surface ablation due to the intense plasmonic near-field. The results clearly show that fs pulses can be used to significantly modulate the nature of nonmetallic materials and could possibly serve as a basic tool for the excitation of SPPs on nonmetallic materials using ultrafast laser-matter interactions.

2.
Sci Rep ; 12(1): 10526, 2022 06 22.
Article in English | MEDLINE | ID: mdl-35732697

ABSTRACT

Plasma medicine, a therapeutic technology that uses atmospheric-pressure plasma, is attracting much attention as an innovative tool for the medical field. Most of the plasma biomedical tools use direct effects, such as heat, optical stimulation, and reactive chemical species, on the lesion. Nanoparticulation techniques using indirect action by plasma, i.e., generation of electric fields, have the potential to be applied to promote transdermal absorption, where drugs pass through the barrier function of skin and penetrate into internal tissues. Here, we show a method to directly generate the nano-sized mist by passing a solution through the dielectric barrier discharge. This method enables us to produce the mist potentially in the nanometer size range for both water-based and oil-based solutions. Ease of mist generation was influenced by the plasma-induced changes in physical and chemical characteristics, including electrical conductivity, viscosity, and chemical species. We anticipate the developed method for nano-sized mist generation to provide a technique in the applications of the transdermal absorption system, including those related to pharmaceuticals and cosmetics.


Subject(s)
Atmospheric Pressure , Skin , Electric Conductivity , Skin Absorption , Water
3.
Nanomaterials (Basel) ; 10(8)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751542

ABSTRACT

Silicon suboxide (SiOx, x ≈ 1) is a substoichiometric silicon oxide with a large refractive index and optical absorption coefficient that oxidizes to silica (SiO2) by annealing in air at ~1000 °C. We demonstrate that nanostructures with a groove period of 200-330 nm can be formed in air on a silicon suboxide film with 800 nm, 100 fs, and 10 Hz laser pulses at a fluence an order of magnitude lower than that needed for glass materials such as fused silica and borosilicate glass. Experimental results show that high-density electrons can be produced with low-fluence femtosecond laser pulses, and plasmonic near-fields are subsequently excited to create nanostructures on the surface because silicon suboxide has a larger optical absorption coefficient than glass. Calculations using a model target reproduce the observed groove periods well and explain the mechanism of the nanostructure formation.

4.
Nanomaterials (Basel) ; 8(7)2018 Jul 16.
Article in English | MEDLINE | ID: mdl-30012968

ABSTRACT

This study reports the results of experiments on periodic nanostructure formation on diamond-like carbon (DLC) films induced with 800 nm, 7-femtosecond (fs) laser pulses at low fluence from a Ti:sapphire laser oscillator. It was demonstrated that 7-fs laser pulses with a high power density of 0.8⁻2 TW/cm² at a low fluence of 5⁻12 mJ/cm² can form a periodic nanostructure with a period of 60⁻80 nm on DLC films. The period decreases with increasing fluence of the laser pulses. The experimental results and calculations for a model target show that 7-fs pulses can produce a thinner metal-like layer on the DLC film through a nonlinear optical absorption process compared with that produced with 100-fs pulses, creating a finer nanostructure via plasmonic near-field ablation.

5.
Opt Express ; 24(5): 4648-4653, 2016 Mar 07.
Article in English | MEDLINE | ID: mdl-29092293

ABSTRACT

We demonstrate the formation of a homogeneous nanograting with 50-nm period on GaN in air, using ultraviolet femtosecond (fs) laser pulses at 266 nm in the recently developed two-step ablation technique. The experimental results have shown that the ablation technique successfully controlled the spatial mode of surface plasmon polaritons (SPP) excited on the target surface and decreased the grating period in accordance with the short wavelength of fs laser pulses. Calculation for a model target reproduces well the laser-wavelength dependent periods, being in good agreement with the observed, and supports the mechanism for nanostructuring.

6.
Opt Express ; 22(12): 14696-704, 2014 Jun 16.
Article in English | MEDLINE | ID: mdl-24977565

ABSTRACT

Titanium dioxide (TiO2) film is an important biomaterial used to improve the biocompatibility of titanium (Ti). We have used a film coating method with an aerosol beam and femtosecond laser irradiation to form periodic structures on biomaterials for control of the cell spreading. The control of cell spreading on biomaterials is important for the development of advanced biomaterials. In this study, nanostructures with periods of 130 and 230 nm were formed on a film using a femtosecond laser with wavelengths of 388 and 775 nm, respectively. The nanostructure period on the film was 30% of the laser wavelengths. Periods produced with wavelengths of 388 and 775 nm were calculated using a surface plasmon polariton (SPP) model and the experimental results for both wavelengths were in the range of the calculated periods, which suggests that the mechanism for the formation of the periodic nanostructures on the film with a femtosecond laser was due to the excitation of SPPs.


Subject(s)
Lasers , Light , Models, Theoretical , Nanostructures/chemistry , Nanotechnology/methods , Titanium/chemistry , Surface Properties
7.
Opt Express ; 20(14): 14848-56, 2012 Jul 02.
Article in English | MEDLINE | ID: mdl-22772179

ABSTRACT

Focused on silicon surface in water, superimposed multiple shots of linearly polarized 800-nm, 100-fs, 10-Hz laser pulses at lower fluence than the single-pulse ablation threshold are shown to produce two kinds of periodic nanostructures with almost constant periods of 150 nm and 400 nm. Surface plasmon polaritons excited in the surface layer illustrates well the formation of nanostructures and its dynamic properties observed. Pump and probe measurements of the ultrafast change in surface reflectivity during the interaction have demonstrated that the multiple low-fluence fs pulses are crucial to the nanostructuring through the accumulation of non-thermal bonding structure change and the subsequent nanoscale ablation.

8.
Phys Rev Lett ; 106(1): 013904, 2011 Jan 07.
Article in English | MEDLINE | ID: mdl-21231743

ABSTRACT

We present a novel method to retrieve angular distributions of high-order harmonic generation from a single molecule. This technique uses an iterative procedure based only on experimental results of time and angle-dependent harmonic signals, and no actual shape of molecular orbital is assumed. The molecular axis distribution in a target gas can simultaneously be deduced in this procedure. The angle-dependent signal retrieved for a single N2 and O2 molecule is demonstrated to reflect the highest occupied molecular orbital, excluding the ambiguity due to the imperfect alignment.

9.
Opt Lett ; 34(11): 1651-3, 2009 Jun 01.
Article in English | MEDLINE | ID: mdl-19488137

ABSTRACT

We apply high-order harmonic generation to sensitive measurements of the molecular rotational temperature in a thin supersonic gas beam. The method uses nonresonant pump and probe femtosecond laser pulses to generate harmonic radiation from coherently rotating molecules. The rotational temperature of molecules can be derived accurately with high spatial and temporal resolutions from the Fourier spectrum of time-dependent signals. The validity of this method was tested for an expanding flow of an N(2) beam with a rapid temperature decrease. The results show the versatile applicability of this method.

10.
Phys Rev Lett ; 101(18): 183902, 2008 Oct 31.
Article in English | MEDLINE | ID: mdl-18999832

ABSTRACT

High-order harmonic generation from coherently rotating N2 and O2 molecules has been observed for different alignment angles in a pump and probe experiment using femtosecond laser pulses. The results obtained are in excellent agreement with those calculated using a recently developed theory, which represent the characteristic properties predicted for angle-dependent harmonic generation. It is shown that polarization geometry and alignment distribution play essential roles in potential applications to probe electronic structure and dynamics of molecular systems.

11.
Opt Express ; 16(20): 16265-71, 2008 Sep 29.
Article in English | MEDLINE | ID: mdl-18825266

ABSTRACT

We report physical processes responsible for the periodic nanostructure formation in femtosecond-laser ablation of thin film surfaces. It has been found that an initial random distribution of nanoscale ablation traces is periodically structured with an increase in superimposed laser pulses or fluence on diamond-like carbon film used as the target. The results show that the formation of periodicity can be attributed to the excitation of surface plasmon polaritons to induce the periodic enhancement of local fields in the surface layer. The estimated field period is in good agreement with the observed size of nanostructures.


Subject(s)
Lasers , Nanotechnology/methods , Optics and Photonics , Surface Plasmon Resonance/instrumentation , Carbon/chemistry , Electrons , Equipment Design , Nanoparticles , Nanostructures , Nanotechnology/instrumentation , Periodicity , Surface Plasmon Resonance/methods , Surface Properties , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...