Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem B ; 127(13): 3091-3099, 2023 Apr 06.
Article in English | MEDLINE | ID: mdl-36976300

ABSTRACT

The structure of the BaF2-BaO-La2O3-B2O3 glasses was investigated using X-ray diffraction (XRD), nuclear magnetic resonance spectroscopy (NMR), and molecular dynamics (MD) simulation. The total correlation functions calculated from the prepared structural models using the MD simulation successfully reproduced the XRD measurements. In the structural models, the fraction of BO4 units increased with the increased fluorine (F) concentration. Furthermore, the introduced F atom is found to bond with Ba and La atoms but barely bonded with boron atoms, as confirmed through boron-11 and fluorine-19 NMR spectroscopy experiments. Furthermore, the structural models showed that an increase in F atoms increased the heterogeneity of the glass structure.

2.
R Soc Open Sci ; 8(3): 202030, 2021 Mar 24.
Article in English | MEDLINE | ID: mdl-33959355

ABSTRACT

Biodegradable nanoparticles have been well studied as biocompatible delivery systems. Nanoparticles of less than 200 nm in size can facilitate the passive targeting of drugs to tumour tissues and their accumulation therein via the enhanced permeability and retention (EPR) effect. Recent studies have focused on stimuli-responsive drug delivery systems (DDS) for improving the effectiveness of chemotherapy; for example, pH-sensitive DDS depend on the weakly acidic and neutral extracellular pH of tumour and normal tissues, respectively. In our previous work, core-shell nanoparticles composed of the biodegradable polymer poly(lactic acid) (PLA) and the widely used inorganic biomaterial hydroxyapatite (HAp, which exhibits pH sensitivity) were prepared using a surfactant-free method. These PLA/HAp core-shell nanoparticles could load 750 wt% of a hydrophobic model drug. In this work, the properties of the PLA/HAp core-shell nanoparticles loaded with the anti-cancer drug paclitaxel (PTX) were thoroughly investigated in vitro. Because the PTX-containing nanoparticles were approximately 80 nm in size, they can be expected to facilitate efficient drug delivery via the EPR effect. The core-shell nanoparticles were cytotoxic towards cancer cells (4T1). This was due to the pH sensitivity of the HAp shell, which is stable in neutral conditions and dissolves in acidic conditions. The cytotoxic activity of the PTX-loaded nanoparticles was sustained for up to 48 h, which was suitable for tumour growth inhibition. These results suggest that the core-shell nanoparticles can be suitable drug carriers for various water-insoluble drugs.

3.
Materials (Basel) ; 14(8)2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33919727

ABSTRACT

Poly(lactic acid)/hydroxyapatite (PLA/HAp) core-shell particles are prepared using the emulsification method. These particles are safe for living organisms because they are composed of biodegradable polymers and biocompatible ceramics. These particles are approximately 50-100 nm in size, and their hydrophobic substance loading can be controlled. Hence, PLA/HAp core-shell particles are expected to be used as drug delivery carriers for hydrophobic drugs. In this work, PLA/HAp core-shell particles with a loading of vitamin K1 were prepared, and their drug-loading ability was evaluated. The particles were 40-80 nm in diameter with a PLA core and a HAp shell. The particle size increased with an increase in the vitamin K1 loading. The drug-loading capacity (LC) value of the particles, an indicator of their drug-loading ability, was approximately 250%, which is higher than the previously reported values. The amount of vitamin K1 released from the particles increased as the pH of the soaking solution decreased because the HAp shell easily dissolved under the acidic conditions. The PLA/HAp particles prepared in this work were found to be promising candidates for drug delivery carriers because of their excellent drug-loading ability and pH sensitivity.

4.
ACS Biomater Sci Eng ; 6(5): 2855-2866, 2020 05 11.
Article in English | MEDLINE | ID: mdl-33463271

ABSTRACT

Materials exhibiting "bio-inert properties" are essential for developing medical devices because they are less recognized as foreign substances by proteins and cells in the living body. We have reported that the presence of intermediate water (IW) with the water molecules loosely bound to a polymer is a useful index of the bio-inertness of materials. Here, we analyzed the hydration state and the responses to biomolecules of poly(2-hydroxyethyl methacrylate) (PHEMA) copolymers including small amounts of 2-(dimethylamino)ethyl methacrylate (DMAEMA) (N-series) or/and 2,2,2-trifluoroethyl methacrylate (TFEMA) (F-series). The hydration structure was analyzed by differential scanning calorimetry (DSC), the molecular mobility of the produced copolymers by temperature derivative of DSC (DDSC), and the water mobility by solid 1H pulse nuclear magnetic resonance (NMR). Although the homopolymers did not show bio-inert properties, the binary and ternary PHEMA copolymers with low comonomer contents showed higher bio-inert properties than those of PHEMA homopolymers. The hydration state of PHEMA was changed by introducing a small amount of comonomers. The mobility of both water molecules and hydrated polymers was changed in the N-series nonfreezing water (NFW) with the water molecules tightly bound to a polymer and was shifted to high-mobility IW and free water (FW) with the water molecules scarcely bound to a polymer. On the other hand, in the F-series, FW turned to IW and NFW. Additionally, a synergetic effect was postulated when both comonomers coexist in the copolymers of HEMA, which was expressed by widening the temperature range of cold crystallization, contributing to further improvement of the bio-inert properties.


Subject(s)
Fluorine , Polyhydroxyethyl Methacrylate , Calorimetry, Differential Scanning , Methacrylates , Water
5.
Biomacromolecules ; 20(6): 2265-2275, 2019 06 10.
Article in English | MEDLINE | ID: mdl-31042022

ABSTRACT

Poly(2-methoxyethyl acrylate) (PMEA) shows excellent blood compatibility because of the existence of intermediate water. Various modifications of PMEA by changing its main or side chain's chemical structure allowed tuning of the water content and the blood compatibility of numerous novel polymers. Here, we exploit a possibility of manipulating the surface hydration structure of PMEA by incorporation of small amounts of hydrophobic fluorine groups in MEA polymers using atom-transfer radical polymerization and the (macro) initiator concept. Two kinds of fluorinated MEA polymers with similar molecular weights and the same 5.5 mol % of fluorine content were synthesized using the bromoester of 2,2,3,3,4,4,5,5,6,6,7,7,8,8-pentadecafluoro-1-octanol (F15) and poly(2,2,2-trifluoroethyl methacrylate) (PTFEMA) as (macro) initiators, appearing liquid and solid at room temperature, respectively. The fibrinogen adsorption of the two varieties of fluorinated MEA polymers was different, which could not be explained only by the bulk hydration structure. Both polymers show a nanostructured morphology in the hydrated state with different sizes of the features. The measured elastic modulus of the domains appearing in atomic force microscopy and the intermediate water content shed light on the distinct mechanism of blood compatibility. Contact angle measurements reveal the surface hydration dynamics-while in the hydrated state, F15- b-PMEA reorients easily to the surface exposing its PMEA part to the water, the small solid PTFEMA block with high glass-transition temperature suppresses the movement of PTFEMA- b-PMEA and its reconstruction on the surface. These findings illustrate that in order to make a better blood compatible polymer, the chains containing sufficient intermediate water need to be mobile and efficiently oriented to the water surface.


Subject(s)
Biocompatible Materials/chemical synthesis , Blood Platelets , Fibrinogen/chemistry , Polymethacrylic Acids/chemical synthesis , Adsorption , Biocompatible Materials/chemistry , Halogenation , Humans , Nanostructures/chemistry , Polymethacrylic Acids/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...