Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Type of study
Language
Publication year range
1.
Sci Rep ; 11(1): 13493, 2021 06 29.
Article in English | MEDLINE | ID: mdl-34188159

ABSTRACT

The rate of the remodeling of the arterialized saphenous vein conduit limits the outcomes of coronary artery bypass graft surgery (CABG), which may be influenced by endothelial dysfunction. We tested the hypothesis that high stretch (HS) induces human saphenous vein endothelial cell (hSVEC) dysfunction and examined candidate underlying mechanisms. Our results showed that in vitro HS reduces NO bioavailability, increases inflammatory adhesion molecule expression (E-selectin and VCAM1) and THP-1 cell adhesion. HS decreases F-actin in hSVECs, but not in human arterial endothelial cells, and is accompanied by G-actin and cofilin's nuclear shuttling and increased reactive oxidative species (ROS). Pre-treatment with the broad-acting antioxidant N-acetylcysteine (NAC) supported this observation and diminished stretch-induced actin remodeling and inflammatory adhesive molecule expression. Altogether, we provide evidence that increased oxidative stress and actin cytoskeleton remodeling play a role in HS-induced saphenous vein endothelial cell dysfunction, which may contribute to predisposing saphenous vein graft to failure.


Subject(s)
Actins/metabolism , Endothelial Cells/metabolism , Oxidative Stress , Saphenous Vein/metabolism , Stress, Mechanical , Humans , Reactive Oxygen Species/metabolism , THP-1 Cells
2.
Clin Sci (Lond) ; 135(9): 1189-1207, 2021 05 14.
Article in English | MEDLINE | ID: mdl-33988229

ABSTRACT

Smooth muscle cell (SMC) contractility is essential to vessel tone maintenance and blood pressure regulation. In response to vasoconstrictors, calcium-dependent mechanisms promote the activation of the regulatory myosin light chain, leading to increased cytoskeleton tension that favors cell shortening. In contrast, SMC maintain an intrinsic level of a contractile force independent of vasoconstrictor stimulation and sustained SMC contraction beyond the timescale of calcium-dependent mechanisms suggesting the involvement of additional players in the contractile response. Focal adhesions (FAs) are conceivable candidates that may influence SMC contraction. They are required for actin-based traction employed by cells to sense and respond to environmental cues in a process termed mechanotransduction. Depletion of FA proteins impairs SMC contractility, producing arteries that are prone to dissection because of a lack of mechanical stability. Here, we discuss the role of calcium-independent FA signaling mechanisms in SMC contractility. We speculate that FA signaling contributes to the genesis of a variety of SMC phenotypes and discuss the potential implications for mechanical homeostasis in normal and diseased states.


Subject(s)
Focal Adhesions/metabolism , Mechanotransduction, Cellular , Muscle, Smooth, Vascular/physiology , Myocytes, Smooth Muscle/physiology , Animals , Humans , Vascular Diseases/etiology , Vascular Diseases/metabolism
3.
Braz. j. med. biol. res ; 37(10): 1441-1453, Oct. 2004. ilus, graf
Article in English | LILACS | ID: lil-383026

ABSTRACT

We characterized the role of potential cAMP-responsive elements (CRE) in basal and in induced angiotensin converting enzyme (ACE) gene promoter activity in order to shed light on the regulation of somatic ACE expression. We identified stimulators and repressors of basal expression between 122 and 288 bp and between 415 and 1303 bp upstream from the transcription start site, respectively, using a rabbit endothelial cell (REC) line. These regions also contained elements associated with the response to 8BrcAMP. When screening for CRE motifs we found pCRE, a proximal sequence between 209 and 222 bp. dCRE, a distal tandem of two CRE-like sequences conserved between rats, mice and humans, was detected between 834 and 846 bp. Gel retardation analysis of nuclear extracts of REC indicated that pCRE and dCRE bind to the same protein complexes as bound by a canonical CRE. Mutation of pCRE and dCRE in REC established the former as a positive element and the latter as a negative element. In 293 cells, a renal cell line, pCRE and dCRE are negative regulators. Co-transfection of ATF-2 or ATF-2 plus c-Jun repressed ACE promoter activity, suggesting that the ACE gene is controlled by cellular stress. Although mapping of cAMP responsiveness was consistent with roles for pCRE and dCRE, mutation analysis indicated that they were not required for cAMP responsiveness. We conclude that the basal activity of the somatic ACE promoter is controlled by proximal and distal CREs that can act as enhancers or repressors depending on the cell context.


Subject(s)
Animals , Rabbits , Rats , Cyclic AMP , Gene Expression Regulation, Enzymologic , Peptidyl-Dipeptidase A , Promoter Regions, Genetic , Base Sequence , Cells, Cultured , Endothelial Cells , Molecular Sequence Data , Response Elements , Transfection
4.
Braz J Med Biol Res ; 37(10): 1441-53, 2004 Oct.
Article in English | MEDLINE | ID: mdl-15448864

ABSTRACT

We characterized the role of potential cAMP-responsive elements (CRE) in basal and in induced angiotensin converting enzyme (ACE) gene promoter activity in order to shed light on the regulation of somatic ACE expression. We identified stimulators and repressors of basal expression between 122 and 288 bp and between 415 and 1303 bp upstream from the transcription start site, respectively, using a rabbit endothelial cell (REC) line. These regions also contained elements associated with the response to 8BrcAMP. When screening for CRE motifs we found pCRE, a proximal sequence between 209 and 222 bp. dCRE, a distal tandem of two CRE-like sequences conserved between rats, mice and humans, was detected between 834 and 846 bp. Gel retardation analysis of nuclear extracts of REC indicated that pCRE and dCRE bind to the same protein complexes as bound by a canonical CRE. Mutation of pCRE and dCRE in REC established the former as a positive element and the latter as a negative element. In 293 cells, a renal cell line, pCRE and dCRE are negative regulators. Co-transfection of ATF-2 or ATF-2 plus c-Jun repressed ACE promoter activity, suggesting that the ACE gene is controlled by cellular stress. Although mapping of cAMP responsiveness was consistent with roles for pCRE and dCRE, mutation analysis indicated that they were not required for cAMP responsiveness. We conclude that the basal activity of the somatic ACE promoter is controlled by proximal and distal CREs that can act as enhancers or repressors depending on the cell context.


Subject(s)
Cyclic AMP/physiology , Gene Expression Regulation, Enzymologic/physiology , Peptidyl-Dipeptidase A/genetics , Promoter Regions, Genetic/physiology , Animals , Base Sequence , Cells, Cultured , Cyclic AMP/genetics , Endothelial Cells , Molecular Sequence Data , Promoter Regions, Genetic/genetics , Rabbits , Rats , Response Elements/genetics , Response Elements/physiology , Transfection
5.
Braz. j. med. biol. res ; 36(9): 1175-1178, Sept. 2003. tab, graf
Article in English | LILACS | ID: lil-342859

ABSTRACT

Mechanical forces including pressure and shear stress play an important role in vascular homeostasis via the control of the production and release of a variety of vasoactive factors. An increase in vascular shear stress is accompanied by nitric oxide (NO) release and NO synthase activation. Previously, we have demonstrated that shear stress induces angiotensin-I converting enzyme (ACE) down-regulation in vivo and in vitro. In the present study, we determined whether NO participates in the shear stress-induced ACE suppression response. Rabbit aortic endothelial cells were evaluated using the NO synthase inhibitor L-NAME, and two NO donors, diethylamine NONOate (DEA/NO) and sodium nitroprusside (SNP). Under static conditions, incubation of endothelial cells with 1 mM L-NAME for 18 h increased ACE activity by 27 percent (from 1.000 ± 0.090 to 1.272 ± 0.182) while DEA/NO and SNP (0.1, 0.5 and 1 mM) caused no change in ACE activity. Interestingly, ACE activity was down-regulated similarly in the presence or absence of L-NAME (delta(0 mM) = 0.26 ± 0.055, delta(0.1 mM) = 0.21 ± 0.22, delta(1 mM) = 0.36 ± 0.13) upon 18 h shear stress activation (from static to 15 dyn/cm²). Taken together, these results indicate that NO can participate in the maintenance of basal ACE levels in the static condition but NO is not associated with the shear stress-induced inactivation of ACE


Subject(s)
Animals , Rabbits , Hemorheology , Nitric Oxide , Nitric Oxide Synthase , Peptidyl-Dipeptidase A , Aorta , Endothelium, Vascular , Enzyme Activation , Enzyme Inhibitors , Hydrazines , Luciferases , NG-Nitroarginine Methyl Ester , Nitric Oxide Donors , Nitric Oxide Synthase , Nitroprusside , Peptidyl-Dipeptidase A , Time Factors
6.
Braz J Med Biol Res ; 36(9): 1175-8, 2003 Sep.
Article in English | MEDLINE | ID: mdl-12937782

ABSTRACT

Mechanical forces including pressure and shear stress play an important role in vascular homeostasis via the control of the production and release of a variety of vasoactive factors. An increase in vascular shear stress is accompanied by nitric oxide (NO) release and NO synthase activation. Previously, we have demonstrated that shear stress induces angiotensin-I converting enzyme (ACE) down-regulation in vivo and in vitro. In the present study, we determined whether NO participates in the shear stress-induced ACE suppression response. Rabbit aortic endothelial cells were evaluated using the NO synthase inhibitor L-NAME, and two NO donors, diethylamine NONOate (DEA/NO) and sodium nitroprusside (SNP). Under static conditions, incubation of endothelial cells with 1 mM L-NAME for 18 h increased ACE activity by 27% (from 1.000 +/- 0.090 to 1.272 +/- 0.182) while DEA/NO and SNP (0.1, 0.5 and 1 mM) caused no change in ACE activity. Interestingly, ACE activity was down-regulated similarly in the presence or absence of L-NAME (delta(0 mM) = 0.26 0.055, delta(0.1 mM) = 0.21 +/- 0.22, delta(1 mM) = 0.36 +/- 0.13) upon 18 h shear stress activation (from static to 15 dyn/cm2 ). Taken together, these results indicate that NO can participate in the maintenance of basal ACE levels in the static condition but NO is not associated with the shear stress-induced inactivation of ACE.


Subject(s)
Hemorheology , Nitric Oxide Synthase/metabolism , Nitric Oxide/physiology , Peptidyl-Dipeptidase A/metabolism , Animals , Aorta/cytology , Cells, Cultured , Down-Regulation , Endothelium, Vascular/enzymology , Enzyme Activation , Enzyme Inhibitors/pharmacology , Hydrazines/pharmacology , Luciferases/drug effects , Luciferases/metabolism , NG-Nitroarginine Methyl Ester/pharmacology , Nitric Oxide Donors/pharmacology , Nitric Oxide Synthase/drug effects , Nitrogen Oxides , Nitroprusside/pharmacology , Peptidyl-Dipeptidase A/drug effects , Rabbits , Time Factors
7.
Br J Pharmacol ; 130(6): 1263-8, 2000 Jul.
Article in English | MEDLINE | ID: mdl-10903964

ABSTRACT

1. The role of different residues of the rat AT(1A) receptor in the interaction with the N- and C-terminal ends of angiotensin II (AngII) was studied by determining ligand binding and production of inositol phosphates (IP) in COS-7 cells transiently expressing the following AT(1A) mutants: T88H, Y92H, G196I, G196W and D278E. 2. G196W and G196I retained significant binding and IP-production properties, indicating that bulky substituents in position 196 did not affect the interaction of AngII's C-terminal carboxyl with Lys(199) located three residues below. 3. Although the T88A mutation did not affect binding, the T88H mutant had greatly decreased affinity for AngII, suggesting that substitution of Thr(88) by His might hinder binding through an indirect effect. 4. The Y92H mutation caused loss of affinity for AngII that was much less pronounced than that reported for Y92A, indicating that His in that position can fulfil part of the requirements for binding. 5. Replacing Asp(278) by Glu caused a much smaller reduction in affinity than replacing it by Ala, indicating the importance of Asp's beta-carboxyl group for AngII binding. 6. Mutations in residues Thr(88), Tyr(92) and Asp(278) greatly reduced affinity for AngII but not for Sar(1) Leu(8)-AngII, suggesting unfavourable interactions between these residues and AngII's aspartic acid side-chain or N-terminal amino group, which might account for the proposed role of the N-terminal amino group of AngII in the agonist-induced desensitization (tachyphylaxis) of smooth muscles.


Subject(s)
Angiotensin II/metabolism , Receptors, Angiotensin/metabolism , Amino Acid Sequence , Amino Acid Substitution , Angiotensin II/chemistry , Angiotensin II/pharmacology , Animals , Binding, Competitive/drug effects , COS Cells , Dose-Response Relationship, Drug , Inositol Phosphates/metabolism , Iodine Radioisotopes , Molecular Sequence Data , Mutagenesis , Mutation , Protein Binding/drug effects , Radioligand Assay , Rats , Receptor, Angiotensin, Type 1 , Receptors, Angiotensin/genetics
8.
Mol Pharmacol ; 51(2): 301-11, 1997 Feb.
Article in English | MEDLINE | ID: mdl-9203636

ABSTRACT

Two nonpeptide ligands that differ chemically by only a single methyl group but have agonistic (L-162,782) and antagonistic (L-162,389) properties in vivo were characterized on the cloned angiotensin AT1 receptor. Both compounds bound with high affinity (K(I) = 8 and 28 nM, respectively) to the AT1 receptor expressed transiently in COS-7 cells as determined in radioligand competition assays. L-162,782 acted as a powerful partial agonist, stimulating phosphatidylinositol turnover with a bell-shaped dose-response curve to 64% of the maximal level reached in response to angiotensin II. Surprisingly, L-162,389 also stimulated phosphatidylinositol turnover, albeit only to a small percentage of the angiotensin response. The prototype nonpeptide AT1 agonist L-162,313 gave a response of approximately 50%. The apparent EC50 values for all three compounds in stimulating phosphatidylinositol turnover were similar, approximately 30 nM, corresponding to their binding affinity. Each of the three compounds also acted as angiotensin antagonists, yet in this capacity the compounds differed markedly, with IC50 values ranging from 1.05 x 10(-7) M for L-162,389 to 6.5 x 10(-6) for L-162,782. A series of point mutations in the transmembrane segments (TMs) of the AT1 receptor had only minor effect on the binding affinity of the nonpeptide compounds, with the exception of A104V at the top of TM III, which selectively impaired the binding of L-162,782 and L-162,389. Substitutions in the middle of TM III, VI, or VII, which did not affect the binding affinity of the compounds, impaired or eliminated the agonistic efficacy of the nonpeptides but with only minor or no effect on the angiotensin potency or efficacy. Thus, in the N295D rat AT1 construct, L-162,782, L-162,313, and L-162,389 all antagonized the angiotensin-induced phosphatidylinositol turnover with surprisingly similar IC50 values (90-180 nM), and they all bound with unaltered, high affinity (22-36 nM). However, L-162,313 and L-162,782 could stimulate phosphatidylinositol turnover to only 20% of that of angiotensin. It is concluded that minor chemical modifications of either the compound or the receptor can dramatically alter the agonistic efficacy of biphenyl imidazole compounds on the AT1 receptor without affecting their affinity, as determined in binding assays, and that a number of substitutions in the middle of the TM segments affect the efficacy of nonpeptide agonists as opposed to angiotensin.


Subject(s)
Angiotensin II/pharmacology , Antihypertensive Agents/pharmacology , Imidazoles/pharmacology , Mutation/genetics , Receptors, Angiotensin/drug effects , Tetrazoles/pharmacology , Animals , Dose-Response Relationship, Drug , Humans , Ligands , Rats , Receptors, Angiotensin/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...