Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
F1000Res ; 9: 136, 2020.
Article in English | MEDLINE | ID: mdl-32308977

ABSTRACT

We report on the activities of the 2015 edition of the BioHackathon, an annual event that brings together researchers and developers from around the world to develop tools and technologies that promote the reusability of biological data. We discuss issues surrounding the representation, publication, integration, mining and reuse of biological data and metadata across a wide range of biomedical data types of relevance for the life sciences, including chemistry, genotypes and phenotypes, orthology and phylogeny, proteomics, genomics, glycomics, and metabolomics. We describe our progress to address ongoing challenges to the reusability and reproducibility of research results, and identify outstanding issues that continue to impede the progress of bioinformatics research. We share our perspective on the state of the art, continued challenges, and goals for future research and development for the life sciences Semantic Web.


Subject(s)
Biological Science Disciplines , Computational Biology , Semantic Web , Data Mining , Metadata , Reproducibility of Results
2.
Genome Med ; 10(1): 44, 2018 06 07.
Article in English | MEDLINE | ID: mdl-29880027

ABSTRACT

Advanced cancer genomics technologies are now being employed in clinical sequencing, where next-generation sequencers are used to simultaneously identify multiple types of DNA alterations for prescription of molecularly targeted drugs. However, no computational tool is available to accurately detect DNA alterations in formalin-fixed paraffin-embedded (FFPE) samples commonly used in hospitals. Here, we developed a computational tool tailored to the detection of single nucleotide variations, indels, fusions, and copy number alterations in FFPE samples. Elaborated multilayer noise filters reduced the inherent noise while maintaining high sensitivity, as evaluated in tumor-unmatched normal samples using orthogonal technologies. This tool, cisCall, should facilitate clinical sequencing in everyday diagnostics. It is available at https://www.ciscall.org .


Subject(s)
Computational Biology/methods , DNA Copy Number Variations/genetics , Formaldehyde/chemistry , High-Throughput Nucleotide Sequencing/methods , Neoplasms/genetics , Paraffin Embedding , Cell Line, Tumor , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...