Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Artif Organs ; 2023 Dec 05.
Article in English | MEDLINE | ID: mdl-38051434

ABSTRACT

Presepsin, which is used as a biomarker for sepsis, is thought to be removed by dialysis, but the actual removal properties of dialysis are unknown. We investigated the presepsin removal properties of continuous hemodiafiltration using the high concentration of presepsin from human plasma drained by plasma exchange. Each solution in plasma exchange was connected to a continuous hemodiafiltration blood circuit and circulated at 4 conditions. The results show that presepsin was confirmed to be removed more efficiently in hemofiltration than in hemodialysis. In addition, when using a polymethylmethacrylate hemofilter for continuous hemodiafiltration, the lowest presepsin concentration is on the filtrate side, suggesting that the main removal mechanism is adsorption. Since presepsin has a molecular weight of 13,000, its removal efficiency is high by hemofiltration as per principle. In addition, since the main adsorption principle of polymethylmethacrylate hemofilter is hydrophobic bond, presepsin is considered to be adsorbed. Since presepsin is metabolized in the kidney, it is elevated in renal failure. In this paper, we confirmed that presepsin is eliminated by continuous hemodiafiltration not only in the kidney. Depending on the timing of presepsin measurement, there is a risk of missing the diagnosis of sepsis. Kidney function and continuous hemodiafiltration should be checked when measuring presepsin.

2.
Nat Chem ; 12(4): 338-344, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32203438

ABSTRACT

Ionic conductors serve as solid electrolytes for fuel cells and batteries, whereas polar crystals such as ferroelectrics and pyroelectrics-which are typically insulating materials-are used in electronic devices. Here we show a material that combines superionic conductivity with a polar crystal structure at room temperature. This three-dimensional anionic network is based on -Fe-N≡C-Mo- units, with Cs cations hosted in every other pore. In the resulting Cs1.1Fe0.95[Mo(CN)5(NO)]·4H2O material, the negative and positive charges of the framework and Cs+ ions, respectively, are non-symmetrically shifted in the c-axis direction of the unit cell, and spontaneous electric polarization is generated, in turn leading to second harmonic generation (SHG). Additionally, this material is a superionic conductor (with an ionic conductivity value of 4 × 10-3 S cm-1 at 318 K). Furthermore, the ionic conductivity significantly decreases under 532 nm light irradiation (from 1 × 10-3 S cm-1 to 6 × 10-5 S cm-1 at room temperature) and, when irradiation stops, returns to its original value within ~1 h.

3.
Chemistry ; 25(47): 11066-11073, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31148240

ABSTRACT

The self-assembly of cobalt(II) with purine and octacyanidotungstate(V) results in the formation of the three-dimensional Co3 [W(CN)8 ]2 (purine)2 ⋅8.5H2 O (1) coordination polymer. This compound exhibits humidity-induced variation of the number of water molecules of crystallisation leading to a reversible structural phase transition and the alternation of the long-range ferromagnetic ordering temperature from TC =29 K for the pristine assembly (1) to TC =49 K for the sample stored in a low-humidity atmosphere (1-deh). This phenomenon can be attributed to a reversible change in the hydrogen-bonding network resulting in the modification of the local geometries of cobalt(II) as well as the cyanido bridges.

4.
Sci Rep ; 5: 14414, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26439914

ABSTRACT

Development of nanometer-sized magnetic particles exhibiting a large coercive field (Hc) is in high demand for densification of magnetic recording. Herein, we report a single-nanosize (i.e., less than ten nanometers across) hard magnetic ferrite. This magnetic ferrite is composed of ε-Fe2O3, with a sufficiently high Hc value for magnetic recording systems and a remarkably high magnetic anisotropy constant of 7.7 × 10(6) erg cm(-3). For example, 8.2-nm nanoparticles have an Hc value of 5.2 kOe at room temperature. A colloidal solution of these nanoparticles possesses a light orange color due to a wide band gap of 2.9 eV (430 nm), indicating a possibility of transparent magnetic pigments. Additionally, we have observed magnetization-induced second harmonic generation (MSHG). The nonlinear optical-magnetoelectric effect of the present polar magnetic nanocrystal was quite strong. These findings have been demonstrated in a simple iron oxide, which is highly significant from the viewpoints of economic cost and mass production.

SELECTION OF CITATIONS
SEARCH DETAIL
...