Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 10(1): 12185, 2020 Jul 22.
Article in English | MEDLINE | ID: mdl-32699260

ABSTRACT

The large spin Hall effect in topological insulators (TIs) is very attractive for ultralow-power spintronic devices. However, evaluation of the spin Hall angle and spin-orbit torque (SOT) of TIs is usually performed on high-quality single-crystalline TI thin films grown on dedicated III-V semiconductor substrates. Here, we report on room-temperature ultralow power SOT magnetization switching of a ferrimagnetic layer by non-epitaxial BiSb TI thin films deposited on Si/SiO2 substrates. We show that non-epitaxial BiSb thin films outperform heavy metals and other epitaxial TI thin films in terms of the effective spin Hall angle and switching current density by one to nearly two orders of magnitude. The critical SOT switching current density in BiSb is as low as 7 × 104 A/cm2 at room temperature. The robustness of BiSb against crystal defects demonstrate its potential applications to SOT-based spintronic devices.

2.
J Nanosci Nanotechnol ; 12(1): 428-32, 2012 Jan.
Article in English | MEDLINE | ID: mdl-22523997

ABSTRACT

Magnetic domain wall (DW) motion induced by spin transfer torque in magnetic nanowires is of emerging technological interest for its possible applications in spintronic memory or logic devices. Co/Pd multilayered magnetic nanowires with perpendicular magnetic anisotropy were fabricated on the surfaces of Si wafers by ion-beam sputtering. The nanowires had different sized widths and pinning sites formed by an anodic oxidation method via scanning probe microscopy (SPM) with an MFM tip. The magnetic domain structure was changed by an anodic oxidation method. To discover the current-induced DW motion in the Co/Pd nanowires, we employed micromagnetic modeling based on the Landau-Lifschitz-Gilbert (LLG) equation. The split DW motions and configurations due to the edge effects of pinning site and nanowire appeared.


Subject(s)
Cobalt/chemistry , Nanostructures/chemistry , Nanostructures/ultrastructure , Palladium/chemistry , Anisotropy , Magnetic Fields , Materials Testing , Particle Size
SELECTION OF CITATIONS
SEARCH DETAIL
...