Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Biol Chem ; 285(22): 16643-50, 2010 May 28.
Article in English | MEDLINE | ID: mdl-20364020

ABSTRACT

Phosphoinositides play key roles in regulating membrane dynamics and intracellular signaling in eukaryotic cells. However, comparable lipid-based signaling pathways have not been identified in bacteria. Here we show that Mycobacterium smegmatis and other Actinomycetes bacteria can synthesize the phosphoinositide, phosphatidylinositol 3-phosphate (PI3P). This lipid was transiently labeled with [(3)H]inositol. Sensitivity of the purified lipid to alkaline phosphatase, headgroup analysis by high-pressure liquid chromatography, and mass spectrometry demonstrated that it had the structure 1,2-[tuberculostearoyl, octadecenoyl]-sn-glycero 3-phosphoinositol 3-phosphate. Synthesis of PI3P was elevated by salt stress but not by exposure to high concentrations of non-ionic solutes. Synthesis of PI3P in a cell-free system was stimulated by the synthesis of CDP-diacylglycerol, a lipid substrate for phosphatidylinositol (PI) biosynthesis, suggesting that efficient cell-free PI3P synthesis is dependent on de novo PI synthesis. In vitro experiments further indicated that the rapid turnover of this lipid was mediated, at least in part, by a vanadate-sensitive phosphatase. This is the first example of de novo synthesis of PI3P in bacteria, and the transient synthesis in response to environmental stimuli suggests that some bacteria may have evolved similar lipid-mediated signaling pathways to those observed in eukaryotic cells.


Subject(s)
Mycobacterium smegmatis/metabolism , Phosphatidylinositol Phosphates/metabolism , Cell-Free System , Chromatography, High Pressure Liquid , Leishmania/metabolism , Lipids/chemistry , Mass Spectrometry/methods , Nucleotides/chemistry , Oxalic Acid/metabolism , Phosphatidylinositols/chemistry , Phospholipids/chemistry , Phosphorylation , Salts/chemistry , Signal Transduction
2.
J Biol Chem ; 285(18): 13326-36, 2010 Apr 30.
Article in English | MEDLINE | ID: mdl-20215111

ABSTRACT

Lipomannan (LM) and lipoarabinomannan (LAM) are phosphatidylinositol-anchored glycans present in the mycobacterial cell wall. In Mycobacterium smegmatis, the mannan core of LM/LAM constitutes a linear chain of 20-25 alpha1,6-mannoses elaborated by 8-9 alpha1,2-monomannose side branches. At least two alpha1,6-mannosyltransferases mediate the linear mannose chain elongation, and one branching alpha1,2-mannosyltransferase (encoded by MSMEG_4247) transfers monomannose branches. An MSMEG_4247 deletion mutant accumulates branchless LAM and interestingly fails to accumulate LM, suggesting an unexpected role of mannose branching for LM synthesis or maintenance. To understand the roles of MSMEG_4247-mediated branching more clearly, we analyzed the MSMEG_4247 deletion mutant in detail. Our study showed that the deletion mutant restored the synthesis of wild-type LM and LAM upon the expression of MSMEG_4247 at wild-type levels. In striking contrast, overexpression of MSMEG_4247 resulted in the accumulation of dwarfed LM/LAM, although monomannose branching was restored. The dwarfed LAM carried a mannan chain less than half the length of wild-type LAM and was elaborated by an arabinan that was about 4 times smaller. Induced overexpression of an elongating alpha1,6-mannosyltransferase competed with the overexpressed branching enzyme, alleviating the dwarfing effect of the branching enzyme. In wild-type cells, LM and LAM decreased in quantity in the stationary phase, and the expression levels of branching and elongating mannosyltransferases were reduced in concert, presumably to avoid producing abnormal LM/LAM. These data suggest that the coordinated expressions of branching and elongating mannosyltransferases are critical for mannan backbone elongation.


Subject(s)
Bacterial Proteins/metabolism , Cell Wall/enzymology , Lipopolysaccharides/biosynthesis , Mannose/metabolism , Mannosyltransferases/metabolism , Mycobacterium smegmatis/enzymology , Bacterial Proteins/genetics , Cell Wall/genetics , Gene Deletion , Lipopolysaccharides/genetics , Mannosyltransferases/genetics , Mycobacterium smegmatis/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...