Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Food Chem Toxicol ; 67: 113-22, 2014 May.
Article in English | MEDLINE | ID: mdl-24582715

ABSTRACT

Neurolathyrism is a motor neuron (MN) disease caused by ß-N-oxalyl-L-α,ß-diaminopropionic acid (L-ß-ODAP), an AMPA receptor agonist. L-ß-ODAP caused a prolonged rise of intracellular Ca(2+) ([Ca(2+)]i) in rat spinal cord MNs, and the [Ca(2+)]i accumulation was inversely proportional to the MN's life span. The [Ca(2+)]i rise induced by L-ß-ODAP or (S)-AMPA was antagonized completely by NBQX, an AMPA-receptor blocker. However, blocking the L-type Ca(2+) channel with nifedipine significantly lowered [Ca(2+)]i induced by (S)-AMPA, but not that by L-ß-ODAP. Tetrodotoxin completely extinguished the [Ca(2+)]i rise induced by (S)-AMPA or kainic acid, whereas that induced by L-ß-ODAP was only attenuated by 65.6±6% indicating the prominent involvement of voltage-independent Ca(2+) entry. The tetrodotoxin-resistant [Ca(2+)]i induced by L-ß-ODAP was blocked by 2-APB, Gd(3+), La(3+), 1-(ß-[3-(4-methoxy-phenyl)propoxy]-4-methoxyphenethyl)-1H-imidazole hydrochloride (SKF-96365) and flufenamic acid, which all are blockers of the transient receptor potential (TRP) channels. Blockers of group I metabotropic glutamate receptors (mGluR I), 7-(hydroxyiminocyclopropan[b]chromen-1α-carboxylate ethyl ester (CPCCPEt) and 2-methyl-6-(phenylethynyl)-pyridine (MPEP) also lowered the [Ca(2+)]i rise by L-ß-ODAP. MN cell death induced by L-ß-ODAP was prolonged significantly with SKF-96365 as well as NBQX. The results show the involvement of TRPs and mGluR I in L-ß-ODAP-induced MN toxicity through prolonged [Ca(2+)]i mobilization, a unique characteristic of this neurotoxin.


Subject(s)
Calcium/metabolism , Cell Death/drug effects , Lathyrism/chemically induced , Motor Neurons/drug effects , Receptors, Metabotropic Glutamate/metabolism , Transient Receptor Potential Channels/metabolism , beta-Alanine/analogs & derivatives , Animals , Female , Lathyrism/metabolism , Lathyrism/pathology , Motor Neurons/cytology , Pregnancy , Rats , Rats, Wistar , beta-Alanine/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL
...