Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Mar Pollut Bull ; 122(1-2): 17-26, 2017 Sep 15.
Article in English | MEDLINE | ID: mdl-28624357

ABSTRACT

Residence times of microplastics were estimated based on the dependence of meso- and macrolitter residence times on their upward terminal velocities (UTVs) in the ocean obtained by one- and two-year mark-recapture experiments conducted on Wadahama Beach, Nii-jima Island, Japan. A significant linear relationship between the residence time and UTV was found in the velocity range of about 0.3-0.9ms-1, while there was no significant difference between the residence times obtained in the velocity range of about 0.9-1.4ms-1. This dependence on the UTV would reflect the uprush-backwash response of the target items to swash waves on the beach. By extrapolating the linear relationship down to the velocity range of microplastics, the residence times of microplastics and the 1D onshore-offshore diffusion coefficients were inferred, and are one to two orders of magnitude greater than the coefficients of the macroplastics.


Subject(s)
Environmental Monitoring , Plastics , Islands , Japan , Water Movements
2.
Sci Rep ; 5: 10167, 2015 May 18.
Article in English | MEDLINE | ID: mdl-25984948

ABSTRACT

The influence of sea surface temperature (SST) on atmospheric processes over the open ocean has been well documented. However, atmospheric responses to SST in coastal waters are poorly understood. Oceanic stratification (and consequently, SST) in coastal waters largely depends on the fortnightly spring-neap tidal cycle, because of variations in vertical tidal mixing. Here we investigate how changes in SST during the fortnightly tidal cycle affect the lower-level atmosphere over the Seto Inland Sea, Japan. We use a combination of in situ measurements, satellite observations and a regional atmospheric model. We find that the SST in summer shows cool (warm) anomalies over most of the inland sea during spring (neap) tides. Additionally, surface air temperature is positively correlated with the SST as it varies during the fortnightly tidal cycle. Moreover, the fortnightly spring-neap cycle also influences the surface wind speed because the atmospheric boundary layer becomes stabilized or destabilized in response to the difference between air temperature and SST.

SELECTION OF CITATIONS
SEARCH DETAIL
...