Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Prosthet Orthot Int ; 45(1): 46-53, 2021 Feb.
Article in English | MEDLINE | ID: mdl-33834744

ABSTRACT

BACKGROUND: Recommendations for the alignment of the socket and foot in the sprinting prosthesis of athletes with transfemoral amputation are either based on walking biomechanics or lack public scientific evidence. OBJECTIVES: To explore the biomechanical changes and the sensations of a gold medal Paralympic sprinter, while running with three bench alignments: a conventional reference (A0), an innovative alignment based on the biomechanics of elite able-bodied sprinters (A2), and an intermediate alignment (A1). STUDY DESIGN: Single subject with repeated measures. METHODS: A1 and A2 feature a progressively greater socket tilt and a plantar-flexed foot compared to A0. The 30-year-old female athlete trained with three prostheses, one per alignment, for at least 2 months. We administered a questionnaire to collect her impressions. Then, she ran on a treadmill at full speed (5.5 m/s). We measured the kinematics and moments of the prosthetic side, and the ground reaction forces of both sides. RESULTS: A2 reduced the prosthetic side hip extension at foot-off while preserving hip range of motion, decreased the impulse of the hip moment, and increased the horizontal propulsion, leaving sufficient margin to prevent knee buckling without increasing sound side braking forces. Biomechanical outcomes matched well with subjective impressions. CONCLUSIONS: A2 appears promising to improve the performance and comfort of sprinters with transfemoral amputation, without compromising safety. CLINICAL RELEVANCE: Observation of elite able-bodied sprinters led to the definition of a new specific alignment for the sprinting prosthesis of athletes with transfemoral amputation, which appears promising to improve performance and comfort, without compromising safety. This may constitute a major improvement compared to alignments based on walking biomechanics.


Subject(s)
Amputees , Artificial Limbs , Awards and Prizes , Para-Athletes , Adult , Amputation, Surgical , Biomechanical Phenomena , Female , Gait , Humans , Prosthesis Design
2.
Article in English | MEDLINE | ID: mdl-33344960

ABSTRACT

This study aimed to provide multiple regression equations taking into account differences in running speed, leg length, and step characteristics to predict kinematics of maximal speed sprinting. Seventy-nine male sprinters performed a maximal effort 60-m sprint, during which they were videoed through the section from the 40- to 50-m mark. From the video images, leg kinematic variables were obtained and used as dependent variables for multiple linear regression equation with predictors of running speed, leg length, step frequency, and swing/support ratio. Multiple regression equations to predict leg kinematics of maximal speed sprinting were successfully obtained. For swing leg kinematics, a significant regression model was obtained to predict thigh angle at the contralateral foot strike, maximal knee flexion and thigh lift angular velocities, and maximal leg backward swing velocity (adjusted R 2 = 0.194-0.378, medium to large effect). For support leg kinematics, a significant regression model was obtained to predict knee flexion and extension angular displacements, maximal knee extension velocity, maximal leg backward swing angular velocity, and the other 13 kinematic variables (adjusted R 2 = 0.134-0.757, medium to large effect). Based on the results, at a given leg length, faster maximal speed sprinting will be accompanied with greater thigh angle at the contralateral foot strike, greater maximal leg backward swing velocity during the swing phase, and smaller knee extension range during the support phase. Longer-legged sprinters will accomplish the same running speed with a greater thigh angle at contralateral foot strike, greater knee flexion range, and smaller maximal leg backward swing velocity during the support phase. At a given running speed and leg length, higher step frequencies will be achieved with a greater thigh angle at contralateral foot strike and smaller knee flexion and extension ranges during the support phase. At a given running speed, leg length and step frequency, a greater swing/support ratio will be accompanied with a greater thigh angle at contralateral foot strike and smaller knee extension angular displacement and velocity during the support phase. The regression equations obtained in this study will be useful for sprinters when trying to improve their maximal speed sprinting motion.

SELECTION OF CITATIONS
SEARCH DETAIL
...