Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Commun (Camb) ; 60(50): 6447-6450, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38832782

ABSTRACT

The ability of NaCl-type binary transition metal nitrides (incorporating La, Ce, Y, Zr or Hf) to act as catalytic supports facilitating ammonia decomposition was examined. The effect of nitrogen vacancies formed on nitrides can be understood in terms of the ionic radii of the metal cations. A clear correlation between the N2 desorption temperature and catalytic activity was found.

2.
J Acoust Soc Am ; 152(2): 890, 2022 08.
Article in English | MEDLINE | ID: mdl-36050184

ABSTRACT

For simple, safe, portable, and inexpensive evaluation suitable for leg bone diseases of racehorses in the field, an ultrasonic measurement technique was applied to evaluate wave velocities. A digital model of the third metacarpal bone with the bucked shin was fabricated using high-resolution peripheral quantitative computerized tomography data of a racehorse. This model was anisotropic and heterogeneous, and was constructed using the measured ultrasonic wave velocities in the bone. With this model, ultrasonic wave propagation along the bone axis was simulated using the elastic finite-difference time-domain method. We found two main waves with different propagation velocities. The fast-waves showed a wave velocity close to the longitudinal wave in the axial direction. However, the apparent velocities changed dramatically owing to bone surface irregularities (changes of the shape) in the area of bucked shin. The slow-waves showed a wave velocity close to the shear wave, which was unaffected by the bone surface irregularities. The simple comparison of different wave behaviors may be a suitable parameter for the initial in vivo screening of bucked shin in the legs of racehorses, which can be performed in the field.


Subject(s)
Bone Diseases , Animals , Anisotropy , Bone and Bones , Horses , Leg Bones , Ultrasonic Waves , Ultrasonography
3.
Sci Rep ; 11(1): 17592, 2021 09 02.
Article in English | MEDLINE | ID: mdl-34475422

ABSTRACT

The transcranial Doppler method (TCD) enables the measurement of cerebral blood flow velocity and detection of emboli by applying an ultrasound probe to the temporal bone window, or the orbital or greater occipital foramina. TCD is widely used for evaluation of cerebral vasospasm after subarachnoid hemorrhage, early detection of patients with arterial stenosis, and the assessment of brain death. However, measurements often become difficult in older women. Among various factors contributing to this problem, we focused on the effect of the diploe in the skull bone on the penetration of ultrasound into the brain. In particular, the effect of the cancellous bone structure in the diploe was investigated. Using a 2D digital bone model, wave propagation through the skull bone was investigated using the finite-difference time-domain (FDTD) method. We fabricated digital bone models with similar structure but different BV/TV (bone volume/total volume) values in the diploe. At a BV/TV of approximately 50-60% (similar to that of older women), the minimum ultrasound amplitude was observed as a result of scattering and multiple reflections in the cancellous diploe. These results suggest that structural changes such as osteoporosis may be one factor hampering TCD measurements.


Subject(s)
Brain/pathology , Cancellous Bone/pathology , Skull/pathology , Aged , Brain/blood supply , Brain/diagnostic imaging , Cancellous Bone/blood supply , Cancellous Bone/diagnostic imaging , Cerebrovascular Circulation , Computer Simulation , Female , Humans , Skull/blood supply , Skull/diagnostic imaging , Ultrasonography, Doppler, Transcranial/methods
4.
J Chem Phys ; 140(21): 214304, 2014 Jun 07.
Article in English | MEDLINE | ID: mdl-24908005

ABSTRACT

Oxidation reaction of a gas-phase aluminum atom by a molecular oxygen was studied by a crossed-beam condition at 12.4 kJ/mol of collision energy. A (1+1) resonance-enhanced multiphoton ionization (REMPI) via the D(2)Σ(+)-X(2)Σ(+) transition of AlO was applied to ionize the product. The REMPI spectrum was analyzed to determine rotational state distributions for v = 0-2 of AlO. For several vib-rotational states of AlO, state selected angular and kinetic energy distributions were determined by a time-sliced ion imaging technique for the first time. Kinetic energy distributions were well represented by that taken into account initial energy spreads of collision energy and the population of the spin-orbit levels of the counter product O((3)P(J)) determined previously. All angular distributions showed forward and backward peaks, and the forward peaks were more pronounced than the backward one for the states of low internal energy. The backward peak intensity became comparable to the forward one for the states of high internal energy. These results and the rotational state distributions suggested that the reaction proceeds via an intermediate which has a lifetime comparable to or shorter than its rotational period.

SELECTION OF CITATIONS
SEARCH DETAIL
...