Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Hum Biol ; 15(1): 8-15, 2003.
Article in English | MEDLINE | ID: mdl-12552573

ABSTRACT

Leptin is an adipocyte-derived hormone that decreases food intake and increases energy expenditure through the activation of the sympathetic nervous system (SNS). Notwithstanding recent intensive research, the underlying physiological mechanism of leptin as well as the etiology of obesity in humans remains elusive. The present study attempted to investigate the potential association between endogenous circulating leptin and sympatho-vagal activities in age- and height-matched obese and nonobese healthy young women. Plasma leptin concentrations were measured by radioimmunoassay. The autonomic nervous system activity was assessed during the resting condition by means of a recently devised power spectral analysis of heart rate variability, which serves to identify three separate frequency components, very low (VLO), low (LO), and high (HI). Plasma leptin concentrations were greater in the obese than in the control group (45.7 +/- 5.89 vs. 11.2 +/- 1.10 ng. ml(-1), P < 0.01). As to the contribution of endogenous leptin to SNS activity, both the ratios of the VLO frequency component reflecting thermoregulatory sympathetic function and the global SNS index [(VLO + LO)/HI] to plasma leptin concentration were markedly reduced in the obese compared to the control group (VLO per leptin: 5.9 +/- 1.39 vs. 37.8 +/- 8.1 ms(2). ml. ng(-1), P < 0.01; SNS index per leptin: 0.04 +/- 0.008 vs. 0.33 +/- 0.01 ml c. ng(-1), P < 0.01). Additionally, a nonlinear regression analysis revealed that these ratios exponentially decreased as a function of body fat content (VLO per leptin r(2) = 0.57, P < 0.01; SNS index per leptin r(2) = 0.53, P < 0.01). Our data suggest that reduced sympathetic responsiveness to endogenous leptin production, implying peripheral leptin resistance, might be a pathophysiological feature of obesity in otherwise healthy young women. The findings regarding the association of leptin, body fat content, and SNS activity further indicate that the 30% of total body fat, which has been used as a criterion of obesity, might be a critical point at which leptin resistance is induced.


Subject(s)
Leptin/physiology , Obesity/etiology , Sympathetic Nervous System/physiology , Vagus Nerve/physiology , Body Composition , Electrocardiography , Fasting , Female , Heart Rate , Humans , Leptin/blood , Obesity/blood , Obesity/physiopathology
2.
J Physiol Anthropol Appl Human Sci ; 21(1): 67-74, 2002 Jan.
Article in English | MEDLINE | ID: mdl-11938611

ABSTRACT

The present study was designed to investigate the effects of clothing skin pressures exerted by two different types of brassieres (a conventional higher skin-pressured brassiere and a newly devised low skin-pressured brassiere) on the autonomic nervous system (ANS) activity. Six healthy young women (22.8 +/- 1.4 yrs.) with regular menstrual cycles participated in this study. The ANS activities were assessed by means of heart rate variability power spectral analysis. The skin pressures exerted by the brassieres were measured with an air-pack type contact surface pressure sensor at five different points. The total amount of clothing pressure, and the pressures at the center and the side regions of the brassieres were significantly greater in the high than in the low skin-pressured brassiere (Total 9816.1 +/- 269.0 vs. 6436.8 +/- 252.4 Pa, P < 0.01; Center 2212.1 +/- 336.3 vs. 353.8 +/- 85.8 Pa, P < 0.01; Side 2556.8 +/- 316.1 vs. 1747.2 +/- 199.2 Pa, P < 0.05). Concerning the ANS activity, the Total power, and the very low frequency (VLF) and the high frequency (HF) components were significantly decreased in the high skin-pressured brassiere than those in the low skin-pressured brassiere (Total 531.6 +/- 57.3 vs. 770.5 +/- 54.2 ms2, P < 0.01; VLF 60.7 +/- 14.6 vs. 179.2 +/- 38.1 ms2, P < 0.05; HF 209.5 +/- 33.2 vs. 283.2 +/- 61.5 ms2, P < 0.01). Our data indicate that the higher clothing pressures exerted by a conventional brassiere have a significant negative impact on the ANS activity, which is predominantly attributable to the significant decrease in the parasympathetic as well as the thermoregulatory sympathetic nerve activities. Since the ANS activity plays an important role in modulating the internal environment in the human body, excess clothing pressures caused by constricting types of foundation garments on the body would consequently undermine women's health.


Subject(s)
Autonomic Nervous System/physiology , Clothing , Heart Rate/physiology , Skin Physiological Phenomena , Adult , Body Temperature Regulation/physiology , Electrocardiography , Female , Humans , Pressure/adverse effects , Skin/innervation
SELECTION OF CITATIONS
SEARCH DETAIL
...