Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Chemistry ; 12(22): 5697-721, 2006 Jul 24.
Article in English | MEDLINE | ID: mdl-16729341

ABSTRACT

(P)-(+)-Hexaspiro[2.0.0.0. 0.0.2.1.1.1.1.1]pentadecane [(P)-17] as well as (M)-(-)- and (P)-(+)-octaspiro[2.0.0.0.0.0.0.0.2.1.1.1.1.1.1.1]nonadecanes [(M)- and (P)-25]-enantiomerically pure unbranched [7]- and [9]triangulanes-have been prepared starting from racemic THP-protected (methylenecyclopropyl)methanol 6. The relative configurations of all important intermediates as well as the absolute configurations of the key intermediates were established by X-ray crystal structure analyses. This new convergent approach to enantiomerically pure linear [n]triangulanes for n=7, 9 was also tested in two variants towards [15]triangulane. Some of the most prominent and unexpected features of the newly prepared compounds are the remarkable modes of self-assembly of the diols (P)-14, (E)-(3S,3'S,4S,4'S,5R,5'R)-21, (P)-(+)-22, and (E)-31 in the solid state through frameworks of intermolecular hydrogen bonds leading to, depending on the respective structure, nanotube- [(P)-14, (P)-(+)-22, and (E)-31], honeycomb-like structures [(E)-(3S,3'S,4S,4'S,5R,5'R)-21] or a supramolecular double helix [(P)-(+)- and (M)-(-)-22]. Liquid crystalline properties of the esters and ethers of the diols (P)-14, (P)-, and (M)-22 have also been tested. Although all of these [n]triangulanes have no chromophore which would lead to significant absorptions above 200 nm, they exhibit surprisingly high specific rotations even at 589 nm with [alpha](20)(D)=+672.9 (c=0.814 in CHCl(3)) for (P)-(+)-17, +909.9 (c=0.96 in CHCl(3)) for (P)-(+)-25, -890.5 (c=1.01 in CHCl(3)) for (M)-(-)-25, and -1302.5 (c=0.36 in CHCl(3)) for (M)-(-)-39, and the specific rotations increase drastically on going to shorter wavelengths. This outstanding rotatory power is in line with their rather rigid helical arrangement of sigma bonds, and accordingly these helically shaped unbranched [n]triangulanes may be termed "sigma-[n]helicenes", as they represent the sigma-bond analogues of the aromatic pi-[n]helicenes. Density functional theory (DFT) computations at the B3 LYP/6-31+G(d,p) level of theory for the geometry optimization and time-dependent DFT for determining optical rotations with a triplet-zeta basis set (B3 LYP/TZVP) reproduce the optical rotatory dispersions (ORD) very well for the lower members (n=4, 5) of the sigma-[n]helicenes. For the higher ones (n=7, 9, 15) the computed specific rotations turn out increasingly larger than the experimental values. The remarkable increase of the specific rotation with an increasing number of three-membered rings is proportional neither to the molecular weight nor to the number of cyclopropane rings in these sigma-[n]helicenes.

SELECTION OF CITATIONS
SEARCH DETAIL
...