Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Physiol Endocrinol Metab ; 294(5): E898-909, 2008 May.
Article in English | MEDLINE | ID: mdl-18303122

ABSTRACT

Obese conditions increase the expression of adipocytokine monocyte chemoattractant protein-1 (MCP-1) in adipose tissue as well as MCP-1 plasma levels. To investigate the mechanism behind increased MCP-1, we used a model in which 3T3-L1 adipocytes were artificially hypertrophied by preloading with palmitate in vitro. As observed in obesity, under our model conditions, palmitate-preloaded cells showed significantly increased oxidative stress and increased MCP-1 expression relative to control cells. This increased MCP-1 expression was enhanced by adding exogenous tumor necrosis factor-alpha (TNF-alpha; 17.8-fold vs. control cells, P < 0.01) rather than interleukin-1beta (IL-1beta; 2.6-fold vs. control cells, P < 0.01). However, endogenous TNF-alpha and IL-1beta release was not affected in hypertrophied cells, suggesting that these endogenous cytokines do not mediate hypertrophy-induced increase in MCP-1. MCP-1 secretion from hypertrophied cells was significantly decreased by treatment with antioxidant N-acetyl-cysteine, JNK inhibitors SP600125 and JIP-1 peptide, and IkappaB phosphorylation inhibitors BAY 11-7085 and BMS-345541 (P < 0.01). MCP-1 secretion was not affected by peroxisome proliferator-activated receptor-gamma (PPARgamma) antagonists assayed. Adiponectin, another adipocytokine studied in parallel, also showed increased release in hypertrophy relative to control cells. But in contrast to MCP-1, adiponectin release was significantly suppressed by both exogenous TNF-alpha and IL-1beta as well as by PPARgamma antagonists bisphenol A diglycidyl ether and T0070907 (P < 0.01). JNK inhibitors and IkappaB phosphorylation inhibitors showed no significant effect on adiponectin. We conclude that adipocyte hypertrophy through palmitate loading causes oxidative stress, which in turn increases MCP-1 expression and secretion through JNK and IkappaB signaling. In contrast, the parallel increase in adiponectin expression appears to be related to the PPARgamma ligand properties of palmitate.


Subject(s)
Adipocytes/metabolism , Adiponectin/metabolism , Chemokine CCL2/metabolism , I-kappa B Kinase/physiology , JNK Mitogen-Activated Protein Kinases/physiology , Palmitates/pharmacology , Signal Transduction/physiology , 3T3 Cells , Adipocytes/drug effects , Adipocytes/ultrastructure , Animals , Blotting, Western , Cell Size/drug effects , Hydrogen Peroxide/metabolism , Interleukin-1beta/pharmacology , Mice , PPAR gamma/metabolism , PPAR gamma/physiology , Triglycerides/biosynthesis , Tumor Necrosis Factor-alpha/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...