Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J Antibiot (Tokyo) ; 70(2): 142-146, 2017 02.
Article in English | MEDLINE | ID: mdl-27531221

ABSTRACT

Persulcatusin (IP), which is an antimicrobial peptide found in Ixodes persulcatus midgut, is active against Gram-positive bacteria such as Staphylococcus aureus. Multidrug-resistant bacteria in particular methicillin-resistant S. aureus (MRSA), vancomycin-intermediate S. aureus (VISA) and vancomycin-resistant S. aureus (VRSA) are a worldwide clinical concern. In the present study, to explore the potential of IP as a new agent against multidrug-resistant S. aureus infections, we evaluated the antimicrobial activity of IP against multidrug-resistant S. aureus strains by MIC90, morphological observation with scanning electron microscope (SEM), and the calcein leakage assay of membrane integrity. Among the six antimicrobial peptides used in this study, IP exhibited the lowest MIC90 values for both vancomycin-susceptible and -resistant S. aureus strains. The IP MIC90 against a VISA strain was equivalent to vancomycin, while the MIC90 against VRSA was relatively low. SEM observations indicated that bacterial cells exposed to IP were crumpled and showed prominent structural changes. Moreover, IP influenced the cell membranes of both MRSA and VRSA in a mere 5 min, leading to leakage of the preloaded calcein. Although a VISA strain was resistant to the action of IP on cell membrane, the MIC90 of IP was lower than that of Nisin, suggesting that IP had another bactericidal mechanism in addition to cell membrane attack. Our results indicate that the synthetic tick antimicrobial peptide, IP exhibits strong antibacterial activity against multidrug-resistant S. aureus strains, including VRSA, via both cell membrane attack and another unknown mechanism. IP represents a promising candidate for a new anti-VRSA therapy.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Cell Membrane/drug effects , Ixodes/metabolism , Peptides/pharmacology , Staphylococcus aureus/drug effects , Animals , Antimicrobial Cationic Peptides/metabolism , Drug Resistance, Multiple, Bacterial , Microbial Sensitivity Tests , Microscopy, Electron, Scanning , Peptides/metabolism , Staphylococcus aureus/ultrastructure
2.
Parasit Vectors ; 9: 85, 2016 Feb 13.
Article in English | MEDLINE | ID: mdl-26873587

ABSTRACT

BACKGROUND: Antimicrobial peptides (AMPs) are considered promising candidates for the development of novel anti-infective agents. In arthropods such as ticks, AMPs form the first line of defense against pathogens in the innate immune response. Persulcatusin (IP) was found in the Ixodes persulcatus midgut, and its amino acid sequence was reported. However, the complete structure of IP has not been identified. We evaluated the relation between structural features and antimicrobial activity of IP, and its potential as a new anti-methicillin-resistant Staphylococcus aureus (MRSA) agent. METHODS: The structure of IP was predicted using homology modeling and molecular dynamics. IP and other tick AMPs were synthesized using a solid-phase method and purified by high-performance liquid chromatography. Methicillin-susceptible S. aureus (MSSA) and MRSA were used for the minimum inhibitory concentration (MIC) test and short-time killing assay of IP and other tick peptides. The influence of IP on mammalian fibroblasts and colon epithelial cells and each cell DNA and its hemolytic activity towards human erythrocytes were also examined. RESULTS: In the predicted IP structure, the structure with an S-S bond was more stable than that without an S-S bond. The MIC after 24 h of incubation with IP was 0.156-1.25 µg/mL for MSSA and 0.625-2.5 µg/mL for MRSA. Compared with the mammalian antimicrobial peptide and other tick peptides, IP was highly effective against MRSA. Moreover, IP showed a dose-dependent bactericidal effect on both MSSA and MRSA after 1 h of incubation. IP had no observable effect on mammalian cell growth or morphology, on each cell DNA and on human erythrocytes. CONCLUSIONS: We predicted the three-dimensional structure of IP and found that the structural integrity was maintained by three S-S bonds, which were energetically important for the stability and for forming α helix and ß sheet. IP has cationic and amphipathic properties, which might be related to its antimicrobial activity. Furthermore, the antimicrobial activity of IP against MRSA was stronger than that of other antimicrobial peptides without apparent damage to mammalian and human cells, demonstrating its possible application as a new anti-MRSA medicine.


Subject(s)
Antimicrobial Cationic Peptides/isolation & purification , Antimicrobial Cationic Peptides/pharmacology , Insect Proteins/isolation & purification , Insect Proteins/pharmacology , Ixodes/chemistry , Staphylococcus aureus/drug effects , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Cell Survival/drug effects , Epithelial Cells/drug effects , Epithelial Cells/physiology , Erythrocytes/drug effects , Fibroblasts/drug effects , Fibroblasts/physiology , Hemolysis , Humans , Insect Proteins/chemical synthesis , Insect Proteins/chemistry , Microbial Sensitivity Tests , Models, Molecular , Protein Conformation
SELECTION OF CITATIONS
SEARCH DETAIL
...