Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(35): 41961-41976, 2023 Sep 06.
Article in English | MEDLINE | ID: mdl-37624730

ABSTRACT

Biobased membranes made with green solvents have numerous advantages in the water purification industry; however, their long-term use is impeded by severe membrane fouling and low structural stability. Herein, we proposed a facile and green approach to fabricate an eco-friendly and biodegradable electrospun membrane by simply blending polycaprolactone (PCL) with sulfonated kraft lignin (SKL) in a green solvent (i.e., acetic acid) without needing any additional post-treatment. We investigated the influence of SKL content on the surface morphology, chemical composition, and mechanical properties of the electrospun membrane. The SKL-modified membranes (L-5 and L-10) showed superhydrophilicity and underwater superoleophobicity with a water contact angle (WCA) of 0° (<3 s) and an underwater-oil contact angle (UWOCA) over 150° due to the combined effect of surface roughness and hydrophilic chemical functionality. Furthermore, the as-prepared membranes demonstrated excellent pure water flux of 800-900 LMH and an emulsion flux of 170-480 LMH during the gravity-driven filtration of three surfactant-stabilized oil-in-water emulsions, namely, mineral oil/water, gasoline/water, and n-hexadecane/water emulsions. In addition, these membranes exhibited superior antioil-fouling performance with excellent separation efficiency (97-99%) and a high flux recovery ratio (>98%). The 10 wt % SKL-incorporated membrane (L-10) also showed consistent separation performance after 10 cyclic tests, indicating its excellent reusability and recyclability. Furthermore, the stability of the membrane under harsh pH conditions was also evaluated and proved to be robust enough to maintain its wettability in a wide pH range (pH 1-10).

2.
Soft Matter ; 17(41): 9420-9427, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34609392

ABSTRACT

In this work, polyelectrolyte mixing ratio is studied as a tuning parameter to control the charge, and thus the separation properties of polyelectrolyte complex (PEC) membranes prepared via Aqueous Phase Separation (APS). In this approach, various ratios of poly(sodium 4-styrenesulfonate) (PSS) and poly(diallyldimethylammonium chloride) (PDADMAC) are mixed at high salinity and the PEC-based membranes are then precipitated using low salinity coagulation baths. The monomeric ratio of PSS to PDADMAC is varied from 1.0 : 0.8 through to 1.0 : 1.2. Obtained membranes have an asymmetric structure and function as nanofiltration membranes with on average 1 L m-2 h-1 bar-1 pure water permeance and <400 Da molecular weight cut-off (MWCO); except for the 1.0 : 1.2 membrane, where the water permeance was much higher (>20 L m-2 h-1 bar-1) with a similarly low MWCO. For the first time, we report the formation of both negatively and positively charged PSS-PDADMAC based APS membranes, as determined by both streaming potential and salt retention measurements. We hypothesize that the salt type used in the APS process plays a key role in the observed change in membrane charge. The point where the membrane charge transitions from negative to positive is found to be between the 1.0 : 0.9 and 1.0 : 1.0 PSS : PDADMAC ratios. The polyelectrolyte ratio not only affects membrane charge, but also their mechanical properties. The 1.0 : 0.9 and 1.0 : 1.0 membranes perform the best amongst the membranes prepared in this study since they have high salt retentions (up to 90% Na2SO4 and 75% MgCl2, respectively) and better mechanical stability. The higher permeance of the more charged, and thus more swollen, 1.0 : 0.8 and 1.0 : 1.2 membranes provide a relevant new direction for the development of APS-based PEC membranes.

SELECTION OF CITATIONS
SEARCH DETAIL
...