Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
IEEE/ACM Trans Comput Biol Bioinform ; 17(6): 1932-1945, 2020.
Article in English | MEDLINE | ID: mdl-31095489

ABSTRACT

We study the problem of computing a minimal subset of nodes of a given asynchronous Boolean network that need to be perturbed in a single-step to drive its dynamics from an initial state to a target steady state (or attractor), which we call the source-target control of Boolean networks. Due to the phenomenon of state-space explosion, a simple global approach that performs computations on the entire network may not scale well for large networks. We believe that efficient algorithms for such networks must exploit the structure of the networks together with their dynamics. Taking this view, we derive a decomposition-based solution to the minimal source-target control problem which can be significantly faster than the existing approaches on large networks. We then show that the solution can be further optimized if we take into account appropriate information about the source state. We apply our solutions to both real-life biological networks and randomly generated networks, demonstrating the efficiency and efficacy of our approach.


Subject(s)
Computational Biology/methods , Models, Genetic , Algorithms , Gene Regulatory Networks/genetics , Signal Transduction/genetics
2.
Article in English | MEDLINE | ID: mdl-29994682

ABSTRACT

Boolean networks is a well-established formalism for modelling biological systems. A vital challenge for analyzing a Boolean network is to identify all the attractors. This becomes more challenging for large asynchronous Boolean networks, due to the asynchronous scheme. Existing methods are prohibited due to the well-known state-space explosion problem in large Boolean networks. In this paper, we tackle this challenge by proposing a SCC-based decomposition method. We prove the correctness of our proposed method and demonstrate its efficiency with two real-life biological networks.


Subject(s)
Computational Biology/methods , Gene Regulatory Networks/genetics , Models, Genetic , Algorithms , Humans , Neoplasms/genetics
3.
IEEE/ACM Trans Comput Biol Bioinform ; 15(4): 1203-1216, 2018.
Article in English | MEDLINE | ID: mdl-29990128

ABSTRACT

As a well-established computational framework, probabilistic Boolean networks (PBNs) are widely used for modelling, simulation, and analysis of biological systems. To analyze the steady-state dynamics of PBNs is of crucial importance to explore the characteristics of biological systems. However, the analysis of large PBNs, which often arise in systems biology, is prone to the infamous state-space explosion problem. Therefore, the employment of statistical methods often remains the only feasible solution. We present ${\mathsf{ASSA-PBN}}$ , a software toolbox for modelling, simulation, and analysis of PBNs. ${\mathsf{ASSA-PBN}}$ provides efficient statistical methods with three parallel techniques to speed up the computation of steady-state probabilities. Moreover, particle swarm optimisation (PSO) and differential evolution (DE) are implemented for the estimation of PBN parameters. Additionally, we implement in-depth analyses of PBNs, including long-run influence analysis, long-run sensitivity analysis, computation of one-parameter profile likelihoods, and the visualization of one-parameter profile likelihoods. A PBN model of apoptosis is used as a case study to illustrate the main functionalities of ${\mathsf{ASSA-PBN}}$ and to demonstrate the capabilities of ${\mathsf{ASSA-PBN}}$ to effectively analyse biological systems modelled as PBNs.


Subject(s)
Models, Genetic , Models, Statistical , Software , Systems Biology/methods , Algorithms , Markov Chains
4.
IEEE/ACM Trans Comput Biol Bioinform ; 15(5): 1525-1537, 2018.
Article in English | MEDLINE | ID: mdl-28534781

ABSTRACT

Probabilistic Boolean networks (PBNs) is a well-established computational framework for modelling biological systems. The steady-state dynamics of PBNs is of crucial importance in the study of such systems. However, for large PBNs, which often arise in systems biology, obtaining the steady-state distribution poses a significant challenge. In this paper, we revive the two-state Markov chain approach to solve this problem. This paper contributes in three aspects. First, we identify a problem of generating biased results with the approach and we propose a few heuristics to avoid such a pitfall. Second, we conduct an extensive experimental comparison of the extended two-state Markov chain approach and another approach based on the Skart method. We analyze the results with machine learning techniques and we show that statistically the two-state Markov chain approach has a better performance. Finally, we demonstrate the potential of the extended two-state Markov chain approach on a case study of a large PBN model of apoptosis in hepatocytes.


Subject(s)
Markov Chains , Models, Statistical , Systems Biology/methods , Algorithms , Area Under Curve , Models, Biological
5.
Innate Immun ; 22(5): 325-35, 2016 07.
Article in English | MEDLINE | ID: mdl-27189426

ABSTRACT

Proteus spp. strains are some of the most important pathogens associated with complicated urinary tract infections and bacteremia affecting patients with immunodeficiency and long-term urinary catheterization. For epidemiological purposes, various molecular typing methods have been developed for this pathogen. However, these methods are labor intensive and time consuming. We evaluated a new method of differentiation between strains. A collection of Proteus spp. strains was analyzed by attenuated total reflectance Fourier transform infrared (ATR FT-IR) spectroscopy in the mid-infrared region. ATR FT-IR spectroscopy used in conjunction with a diamond ATR accessory directly produced the biochemical profile of the surface chemistry of bacteria. We conclude that a combination of ATR FT-IR spectroscopy and mathematical modeling provides a fast and reliable alternative for discrimination between Proteus isolates, contributing to epidemiological research.


Subject(s)
Bacteremia/diagnosis , Proteus Infections/diagnosis , Proteus mirabilis/metabolism , Spectroscopy, Fourier Transform Infrared/methods , Urinary Tract Infections/diagnosis , Animals , Feasibility Studies , Humans , Lipopolysaccharides/immunology , Models, Theoretical , Poland/epidemiology , Proteus Infections/epidemiology , Proteus mirabilis/classification , Species Specificity
6.
PLoS One ; 9(7): e98001, 2014.
Article in English | MEDLINE | ID: mdl-24983623

ABSTRACT

BACKGROUND: There exist several computational tools which allow for the optimisation and inference of biological networks using a Boolean formalism. Nevertheless, the results from such tools yield only limited quantitative insights into the complexity of biological systems because of the inherited qualitative nature of Boolean networks. RESULTS: We introduce optPBN, a Matlab-based toolbox for the optimisation of probabilistic Boolean networks (PBN) which operates under the framework of the BN/PBN toolbox. optPBN offers an easy generation of probabilistic Boolean networks from rule-based Boolean model specification and it allows for flexible measurement data integration from multiple experiments. Subsequently, optPBN generates integrated optimisation problems which can be solved by various optimisers. In term of functionalities, optPBN allows for the construction of a probabilistic Boolean network from a given set of potential constitutive Boolean networks by optimising the selection probabilities for these networks so that the resulting PBN fits experimental data. Furthermore, the optPBN pipeline can also be operated on large-scale computational platforms to solve complex optimisation problems. Apart from exemplary case studies which we correctly inferred the original network, we also successfully applied optPBN to study a large-scale Boolean model of apoptosis where it allows identifying the inverse correlation between UVB irradiation, NFκB and Caspase 3 activations, and apoptosis in primary hepatocytes quantitatively. Also, the results from optPBN help elucidating the relevancy of crosstalk interactions in the apoptotic network. SUMMARY: The optPBN toolbox provides a simple yet comprehensive pipeline for integrated optimisation problem generation in the PBN formalism that can readily be solved by various optimisers on local or grid-based computational platforms. optPBN can be further applied to various biological studies such as the inference of gene regulatory networks or the identification of the interaction's relevancy in signal transduction networks.


Subject(s)
Apoptosis/radiation effects , Models, Biological , Software , Ultraviolet Rays , Animals , Caspase 3/metabolism , Humans , NF-kappa B/metabolism
7.
Cell Commun Signal ; 11: 46, 2013 Jul 01.
Article in English | MEDLINE | ID: mdl-23815817

ABSTRACT

Probabilistic Boolean network (PBN) modelling is a semi-quantitative approach widely used for the study of the topology and dynamic aspects of biological systems. The combined use of rule-based representation and probability makes PBN appealing for large-scale modelling of biological networks where degrees of uncertainty need to be considered.A considerable expansion of our knowledge in the field of theoretical research on PBN can be observed over the past few years, with a focus on network inference, network intervention and control. With respect to areas of applications, PBN is mainly used for the study of gene regulatory networks though with an increasing emergence in signal transduction, metabolic, and also physiological networks. At the same time, a number of computational tools, facilitating the modelling and analysis of PBNs, are continuously developed.A concise yet comprehensive review of the state-of-the-art on PBN modelling is offered in this article, including a comparative discussion on PBN versus similar models with respect to concepts and biomedical applications. Due to their many advantages, we consider PBN to stand as a suitable modelling framework for the description and analysis of complex biological systems, ranging from molecular to physiological levels.


Subject(s)
Models, Biological , Models, Statistical , Probability , Gene Regulatory Networks , Humans
8.
Article in English | MEDLINE | ID: mdl-22442133

ABSTRACT

In vitro assembly of intermediate filaments from tetrameric vimentin consists of a very rapid phase of tetramers laterally associating into unit-length filaments and a slow phase of filament elongation. We focus in this paper on a systematic quantitative investigation of two molecular models for filament assembly, recently proposed in (Kirmse et al. J. Biol. Chem. 282, 52 (2007), 18563-18572), through mathematical modeling, model fitting, and model validation. We analyze the quantitative contribution of each filament elongation strategy: with tetramers, with unit-length filaments, with longer filaments, or combinations thereof. In each case, we discuss the numerical fitting of the model with respect to one set of data, and its separate validation with respect to a second, different set of data. We introduce a high-resolution model for vimentin filament self-assembly, able to capture the detailed dynamics of filaments of arbitrary length. This provides much more predictive power for the model, in comparison to previous models where only the mean length of all filaments in the solution could be analyzed. We show how kinetic observations on low-resolution models can be extrapolated to the high-resolution model and used for lowering its complexity.


Subject(s)
Intermediate Filaments/chemistry , Models, Molecular , Vimentin/chemistry , Intermediate Filaments/metabolism
9.
J Theor Biol ; 265(3): 455-66, 2010 Aug 07.
Article in English | MEDLINE | ID: mdl-20438739

ABSTRACT

The heat shock response (HSR) is a highly evolutionarily conserved defence mechanism allowing the cell to promptly react to elevated temperature conditions and other forms of stress. It has been subject to intense research for at least two main reasons. First, it is considered a promising candidate for deciphering the engineering principles underlying regulatory networks. Second, heat shock proteins (main actors of the HSR) play crucial role in many fundamental cellular processes. Therefore, profound understanding of the heat shock response would have far-reaching ramifications for the cell biology. Recently, a new deterministic model of the eukaryotic heat shock response has been proposed in the literature. It is very attractive since it consists of only the minimum number of components required by any functional regulatory network, while yet being capable of biological validation. However, it admits small molecule populations of some of the considered metabolites. In this paper a stochastic model corresponding to the deterministic one is constructed and the outcomes of these two models are confronted. The aim with this comparison is to show that, in the case of the heat shock response, the approximation of a discrete system with a continuous model is a reasonable approach. This is not always the truth, especially when the numbers of molecules of the considered species are small. By making the effort of performing and analysing 1000 stochastic simulations, we investigate the range of behaviour the stochastic model is likely to exhibit. We demonstrate that the obtained results agree well with the dynamics displayed by the continuous model, which strengthens the trust in the deterministic description. A proof of the existence and uniqueness of the stationary distribution of the Markov chain underlying the stochastic model is given. Moreover, the obtained view of the stochastic dynamics and the performed comparison to the outcome of the continuous formulation provide more insight into the dynamics of the heat shock response mechanism.


Subject(s)
Heat-Shock Proteins/metabolism , Heat-Shock Response/physiology , Models, Biological , Computer Simulation , Heat-Shock Proteins/physiology , Markov Chains , Stochastic Processes
10.
BMC Bioinformatics ; 7: 249, 2006 May 08.
Article in English | MEDLINE | ID: mdl-16681847

ABSTRACT

BACKGROUND: A central goal of molecular biology is to understand the regulatory mechanisms of gene transcription and protein synthesis. Because of their solid basis in statistics, allowing to deal with the stochastic aspects of gene expressions and noisy measurements in a natural way, Bayesian networks appear attractive in the field of inferring gene interactions structure from microarray experiments data. However, the basic formalism has some disadvantages, e.g. it is sometimes hard to distinguish between the origin and the target of an interaction. Two kinds of microarray experiments yield data particularly rich in information regarding the direction of interactions: time series and perturbation experiments. In order to correctly handle them, the basic formalism must be modified. For example, dynamic Bayesian networks (DBN) apply to time series microarray data. To our knowledge the DBN technique has not been applied in the context of perturbation experiments. RESULTS: We extend the framework of dynamic Bayesian networks in order to incorporate perturbations. Moreover, an exact algorithm for inferring an optimal network is proposed and a discretization method specialized for time series data from perturbation experiments is introduced. We apply our procedure to realistic simulations data. The results are compared with those obtained by standard DBN learning techniques. Moreover, the advantages of using exact learning algorithm instead of heuristic methods are analyzed. CONCLUSION: We show that the quality of inferred networks dramatically improves when using data from perturbation experiments. We also conclude that the exact algorithm should be used when it is possible, i.e. when considered set of genes is small enough.


Subject(s)
Algorithms , Gene Expression Profiling/methods , Gene Expression/physiology , Models, Biological , Oligonucleotide Array Sequence Analysis/methods , Proteome/metabolism , Signal Transduction/physiology , Artifacts , Artificial Intelligence , Bayes Theorem , Computer Simulation , Models, Statistical , Pattern Recognition, Automated/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...