Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Nutr Sci Vitaminol (Tokyo) ; 70(2): 158-163, 2024.
Article in English | MEDLINE | ID: mdl-38684386

ABSTRACT

The Ussing chamber is a tool for analyzing drug absorption. We investigated whether the Ussing chamber can be used to analyze the process from digestion to absorption of protein in the gastrointestinal tract. Mixtures containing infant formula, whole cow's milk, processed soy milk, enteral nutrition, or human breast milk, were placed in the apical membrane side equipped with Caco-2 cells. After the addition of first pepsin then pancreatin, samples from the apical and basal membranes were collected. Infant formula showed the highest digestibility and absorption rate. This may be attributed to the presence of whey protein, which is rapidly digested and absorbed. The digestion and absorption of human breast milk showed different results in each donor, suggesting that digestion and absorption may vary among individuals. We concluded that the Ussing chamber can continuously analyze the process from digestion to absorption of proteins in the gastrointestinal tract.


Subject(s)
Digestion , Gastrointestinal Tract , Infant Formula , Intestinal Absorption , Milk Proteins , Milk, Human , Milk , Whey Proteins , Digestion/physiology , Humans , Caco-2 Cells , Gastrointestinal Tract/metabolism , Milk, Human/chemistry , Milk, Human/metabolism , Infant Formula/chemistry , Animals , Milk Proteins/metabolism , Milk/chemistry , Dietary Proteins/metabolism , Dietary Proteins/pharmacokinetics , Enteral Nutrition/methods , Soy Milk/chemistry , Infant , Pepsin A/metabolism
2.
J Pharm Sci ; 113(6): 1674-1681, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38432625

ABSTRACT

Lung cancer metastasis often leads to a poor prognosis for patients. Mesenchymal-epithelial transition (MET) is one key process associated with metastasis. MET has also been linked to multidrug drug resistance (MDR). MDR arises from the overactivity of drug efflux transporters such as P-glycoprotein (P-gp) which operate at the cell plasma membrane, under the regulatory control of the scaffold proteins ezrin (Ezr), radixin (Rdx), and moesin (Msn), collectively known as ERM proteins. The current study was intended to clarify the functional changing of P-gp and the underlying mechanisms in the context of dexamethasone (DEX)-induced MET in lung cancer cells. We found that the mRNA and membrane protein expression of Ezr and P-gp was increased in response to DEX treatment. Moreover, the DEX-treated group exhibited an increase in Rho123 efflux, and it was reversed by treatment with the P-gp inhibitor verapamil or Ezr siRNA. The decrease in cell viability with paclitaxel (PTX) treatment was mitigated by pretreatment with DEX. The increased expression and activation of P-gp during the progression of lung cancer MET was regulated by Ezr. The regulatory mechanism of P-gp expression and activity may differ depending on the cell status.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Dexamethasone , Drug Resistance, Neoplasm , Epithelial-Mesenchymal Transition , Lung Neoplasms , Paclitaxel , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Lung Neoplasms/pathology , Dexamethasone/pharmacology , Cell Line, Tumor , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Epithelial-Mesenchymal Transition/drug effects , Paclitaxel/pharmacology , Drug Resistance, Neoplasm/drug effects , Cytoskeletal Proteins/metabolism , Cytoskeletal Proteins/genetics , Drug Resistance, Multiple/drug effects , Cell Survival/drug effects , Verapamil/pharmacology , Membrane Proteins/metabolism , Membrane Proteins/genetics , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B/genetics , Microfilament Proteins/metabolism , Microfilament Proteins/genetics , A549 Cells
3.
Biol Pharm Bull ; 47(4): 750-757, 2024.
Article in English | MEDLINE | ID: mdl-38556260

ABSTRACT

Breast cancer resistance protein (BCRP) is a drug efflux transporter expressed on the epithelial cells of the small intestine and on the lateral membrane of the bile duct in the liver; and is involved in the efflux of substrate drugs into the gastrointestinal lumen and secretion into bile. Recently, the area under the plasma concentration-time curve (AUC) of rosuvastatin (ROS), a BCRP substrate drug, has been reported to be increased by BCRP inhibitors, and BCRP-mediated drug-drug interaction (DDI) has attracted attention. In this study, we performed a ROS uptake study using human colon cancer-derived Caco-2 cells and confirmed that BCRP inhibitors significantly increased the intracellular accumulation of ROS. The correlation between the cell to medium (C/M) ratio of ROS obtained by the in vitro study and the absorption rate constant (ka) ratio obtained by clinical analysis was examined, and a significant positive correlation was observed. Therefore, it is suggested that the in vitro study using Caco-2 cells could be used to quantitatively estimate BCRP-mediated DDI with ROS in the gastrointestinal tract.


Subject(s)
ATP-Binding Cassette Transporters , Neoplasm Proteins , Humans , ATP-Binding Cassette Transporters/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Caco-2 Cells , Reactive Oxygen Species/metabolism , Neoplasm Proteins/metabolism , Drug Interactions , Rosuvastatin Calcium , Gastrointestinal Tract/metabolism
4.
Biol Pharm Bull ; 47(2): 427-433, 2024.
Article in English | MEDLINE | ID: mdl-38369341

ABSTRACT

It has recently been reported that cholangiocyte organoids can be established from primary human hepatocytes. The purpose of this study was to culture the organoids in monolayers on inserts to investigate the biliary excretory capacity of drugs. Cholangiocyte organoids prepared from hepatocytes had significantly higher mRNA expression of CK19, a bile duct epithelial marker, compared to hepatocytes. The organoids also expressed mRNA for efflux transporters involved in biliary excretion of drugs, P-glycoprotein (P-gp), multidrug resistance-associated protein 2 (MRP2), and breast cancer resistance protein (BCRP). The subcellular localization of each protein was observed. These results suggest that the membrane-cultured cholangiocyte organoids are oriented with the upper side being the apical membrane side (A side, bile duct lumen side) and the lower side being the basolateral membrane side (B side, hepatocyte side), and that each efflux transporter is localized to the apical membrane side. Transport studies showed that the permeation rate from the B side to the A side was faster than from the A side to the B side for the substrates of each efflux transporter, but this directionality disappeared in the presence of inhibitor of each transporter. In conclusion, the cholangiocyte organoid monolayer system has the potential to quantitatively evaluate the biliary excretion of drugs. The results of the present study represent an unprecedented system using human cholangiocyte organoids, which may be useful as a screening model to directly quantify the contribution of biliary excretion to the clearance of drugs.


Subject(s)
Hepatobiliary Elimination , Multidrug Resistance-Associated Proteins , Humans , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/metabolism , Membrane Transport Proteins/metabolism , Hepatocytes/metabolism , RNA, Messenger/metabolism
5.
J Pharm Sci ; 113(1): 228-234, 2024 01.
Article in English | MEDLINE | ID: mdl-37898165

ABSTRACT

This report focuses on pharmacokinetic drug-endogenous substrate interactions (DEIs). We hypothesized that P-glycoprotein (P-gp)-mediated DEI might affect androgen kinetics, especially its blood-brain barrier (BBB) permeability. The intracellular accumulation of the endogenous substrates of P-gp, testosterone (TES) and androstenedione (ADO) was increased by several tested drugs in uptake studies using P-gp overexpressing cells, indicating that these drugs inhibit P-gp-mediated efflux of TES of ADO from the cells. In a transport study using rat BBB kit, we found that the BBB limited the penetration of TES and ADO into the central nervous system. In addition, tested drugs that cause DEI were found to increase BBB permeability of TES and ADO via P-gp inhibition. In short, this study provides new findings regarding the possibility that DEI may affect the kinetics of endogenous substrates of P-gp.


Subject(s)
Androgens , Blood-Brain Barrier , Rats , Animals , Blood-Brain Barrier/metabolism , Biological Transport , ATP Binding Cassette Transporter, Subfamily B/metabolism , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Permeability , Testosterone
6.
Biochem Biophys Res Commun ; 665: 19-25, 2023 07 12.
Article in English | MEDLINE | ID: mdl-37148742

ABSTRACT

SN-38, an active metabolite of irinotecan (CPT-11), is thought to circulate enterohepatically via organic anion-transporting polypeptides (OATPs), UDP-glucuronyl transferases (UGTs), multidrug resistance-related protein 2 (MRP2), and breast cancer resistance protein (BCRP). These transporters and enzymes are expressed in not only hepatocytes but also enterocytes. Therefore, we hypothesized that SN-38 circulates between the intestinal lumen and the enterocytes via these transporters and metabolic enzymes. To test this hypothesis, metabolic and transport studies of SN-38 and its glucuronide (SN-38G) were conducted in Caco-2 cells. The mRNA levels of UGTs, MRP2, BCRP, and OATP2B1 were confirmed in Caco-2 cells. SN-38 was converted to SN-38G in Caco-2 cells. The efflux of intracellularly generated SN-38G across the apical (digestive tract) membranes was significantly higher than the efflux across the basolateral (blood, portal vein) membranes of Caco-2 cells cultured on polycarbonate membranes. SN-38G efflux to the apical side was significantly reduced in the presence of MRP2 and BCRP inhibitors, suggesting that SN-38G is transported across the apical membrane by MRP2 and BCRP. Treatment of Caco-2 cells with OATP2B1 siRNA increased the SN-38 residue on the apical side, confirming that OATP2B1 is involved in the uptake of SN-38 into enterocytes. No SN-38 was detected on the basolateral side with or without siRNA treatment, suggesting that the enterohepatic circulation of SN-38 is limited, contrary to previous reports. These results suggest that SN-38 is absorbed into the enterocytes via OATP2B1, glucuronidated by UGTs to SN-38G, and excreted into the digestive tract lumen by MRP2 and BCRP. SN-38G can be deconjugated by ß-glucuronidase from intestinal bacteria in the digestive tract lumen to regenerate SN-38. We named this new concept of local drug circulation "intra-enteric circulation." This mechanism may allow SN-38 to circulate in the intestine and cause the development of delayed diarrhea, a serious side effect of CPT-11.


Subject(s)
Neoplasm Proteins , Humans , Irinotecan , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Caco-2 Cells , Neoplasm Proteins/genetics
7.
Biomedicines ; 11(5)2023 May 16.
Article in English | MEDLINE | ID: mdl-37239127

ABSTRACT

Biopharmaceuticals have developed rapidly in recent years due to the remarkable progress in gene recombination and cell culture technologies. Since the basic structure of biopharmaceuticals can be designed and modified, it is possible to control the duration of action and target specific tissues and cells by kinetic modification. Amino acid sequence modifications, albumin fusion proteins, polyethylene glycol (PEG) modifications, and fatty acid modifications have been utilized to modify the duration of action control and targeting. This review first describes the position of biopharmaceuticals, and then the kinetics (absorption, distribution, metabolism, elimination, and pharmacokinetics) of classical biopharmaceuticals and methods of drug quantification. The kinetic innovations of biopharmaceuticals are outlined, including insulin analog, antibody-related drugs (monoclonal antibodies, Fab analogs, Fc analogs, Fab-PEG conjugated proteins, antibody-drug conjugates, etc.), blood coagulation factors, interferons, and other related drugs. We hope that this review will be of use to many researchers interested in pharmaceuticals derived from biological components, and that it aids in their knowledge of the latest developments in this field.

8.
J Pharm Sci ; 111(12): 3411-3416, 2022 12.
Article in English | MEDLINE | ID: mdl-36181876

ABSTRACT

Pimozide, an antipsychotic drug, is a potent inhibitor of the hERG channel. A case of death due to cardiac arrest has been reported in a boy who received pimozide together with sertraline and aripiprazole. In this study, we focused on drug-drug interactions and investigated the relationships between transporter-mediated intracellular accumulation and the hERG inhibitory effect of pimozide. The accumulation of pimozide in cardiomyocyte-derived AC16 cells was significantly increased by sertraline and aripiprazole, which are thought to have a P-glycoprotein (P-gp) inhibitory effect, and under P-gp siRNA conditions. These results suggest P-gp inhibition increases pimozide accumulation in AC16 cells. We introduced the hERG plasmid into AC16 cells and investigated the concentration-dependent hERG inhibitory effect of pimozide from within AC16 cells. Addition of 10 nM or more pimozide significantly inhibited the hERG current with concentration dependence. These results indicate P-gp-mediated pharmacokinetic interaction increases pimozide accumulation in AC16 cells, and the subsequent elevated pimozide levels within the cells may result in an increased risk of hERG channel inhibition. Our present study calls attention to the risks associated with the combined use of cardiotoxic P-gp substrate(s) and P-gp inhibitory medicines.


Subject(s)
Antipsychotic Agents , Pimozide , Humans , Male , Pimozide/pharmacokinetics , Aripiprazole , Sertraline/pharmacology , Antipsychotic Agents/pharmacology , ATP Binding Cassette Transporter, Subfamily B/genetics , Potassium Channel Blockers
9.
Biomolecules ; 12(6)2022 06 09.
Article in English | MEDLINE | ID: mdl-35740931

ABSTRACT

Transcriptional factors, such as Snail, Slug, and Smuc, that cause epithelial-mesenchymal transition are thought to regulate the expression of Ezrin, Radixin, and Moesin (ERM proteins), which serve as anchors for efflux transporters on the plasma membrane surface. Our previous results using lung cancer clinical samples indicated a correlation between Slug and efflux transporter MRP2. In the current study, we aimed to evaluate the relationships between MRP2, ERM proteins, and Slug in lung cancer cells. HCC827 cells were transfected by Mock and Slug plasmid. Both mRNA expression levels and protein expression levels were measured. Then, the activity of MRP2 was evaluated using CDCF and SN-38 (MRP2 substrates). HCC827 cells transfected with the Slug plasmid showed significantly higher mRNA expression levels of MRP2 than the Mock-transfected cells. However, the mRNA expression levels of ERM proteins did not show a significant difference between Slug-transfected cells and Mock-transfected cells. Protein expression of MRP2 was increased in Slug-transfected cells. The uptake of both CDCF and SN-38 was significantly decreased after transfection with Slug. This change was abrogated by treatment with MK571, an MRP2 inhibitor. The viability of Slug-transfected cells, compared to Mock cells, significantly increased after incubation with SN-38. Thus, Slug may increase the mRNA and protein expression of MRP2 without regulation by ERM proteins in HCC827 cells, thereby enhancing MRP2 activity. Inhibition of Slug may reduce the efficacy of multidrug resistance in lung cancer.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , Multidrug Resistance-Associated Protein 2 , Snail Family Transcription Factors , Biological Transport , Carcinoma, Non-Small-Cell Lung/genetics , Fluoresceins , Humans , Irinotecan , Lung Neoplasms/genetics , Membrane Transport Proteins/metabolism , Multidrug Resistance-Associated Protein 2/genetics , Multidrug Resistance-Associated Protein 2/metabolism , RNA, Messenger/genetics , Snail Family Transcription Factors/genetics , Snail Family Transcription Factors/metabolism
10.
Biol Pharm Bull ; 45(1): 150-153, 2022.
Article in English | MEDLINE | ID: mdl-34980776

ABSTRACT

The aim of this work is to develop a new assay system for screening biliary excretion drugs. When monolayers of human liver-derived cell lines HepG2 and Huh-7 were grown on an insert membrane, the efflux ratio (ER: ratio of the apparent permeability coefficient in the basal-to-apical direction (Papp,B-to-A) to that in the apical to basal direction (Papp,A-to-B)) of sulfobromophthalein (BSP), a model substrate of multidrug resistance-associated protein 2 (MRP2), was greater than 1.0, indicating transport of BSP in the efflux direction. The efflux transport was significantly suppressed by MK-571, an inhibitor of MRPs, in both cell lines. Expression of MRP2 mRNA in HepG2 and Huh-7 was 3.5- and 1.4-fold higher, respectively, than in primary human hepatocytes, while expression of P-glycoprotein and breast cancer resistance protein mRNAs was markedly lower, supporting the idea that MRP2 is the main mediator of directional BSP transport in this assay system. The advantage of our system is the potential to quantitatively evaluate biliary excretion of MRP2 substrates in vitro.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1 , Neoplasm Proteins , ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Biological Transport , Cell Line , Humans , Liver/metabolism , Multidrug Resistance-Associated Proteins/genetics , Multidrug Resistance-Associated Proteins/metabolism , Neoplasm Proteins/metabolism
11.
Br J Radiol ; 95(1130): 20200810, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34705528

ABSTRACT

Metformin is widely used to treat diabetes, but induces changes in glucose uptake in both normal organs and tumors. Here, we review the effects of metformin on the uptake of 18F-fludeoxyglucose (18F-FDG) in tissues and tumors, and its influence on 18F-FDG positron emission tomographic imaging (18F-FDG PET), as well as the mechanisms involved. This is an important issue, because metformin has diverse effects on tissue uptake of 18F-FDG, and this can affect the quality and interpretation of PET images. Metformin increases glucose uptake in the gastrointestinal tract, cerebral white matter, and the kidney, while regions of the cerebrum associated with memory show decreased glucose uptake, and the myocardium shows no change. Hepatocellular carcinoma and breast cancer show increased glucose uptake after metformin administration, while thyroid cancer shows decreased uptake, and colon and pancreatic cancers show no change. A high-energy diet increases 18F-FDG uptake, but this effect is blocked by metformin. Withdrawal of metformin 48 h before PET image acquisition is widely recommended. However, based on our review of the literature, we propose that the differentiation of metformin discontinuation could be reasonable. But future clinical trials are still needed to support our viewpoint.


Subject(s)
Fluorodeoxyglucose F18/pharmacokinetics , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , Positron-Emission Tomography , Radiopharmaceuticals/pharmacokinetics , Animals , Breast Neoplasms/metabolism , Carcinoma, Hepatocellular/metabolism , Colonic Neoplasms/metabolism , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Type 2/metabolism , Energy Intake , Female , Gastrointestinal Tract/drug effects , Gastrointestinal Tract/metabolism , Glucose/pharmacokinetics , Humans , Hyperglycemia/metabolism , Kidney/drug effects , Kidney/metabolism , Liver Neoplasms/metabolism , Mice , Myocardium/metabolism , Pancreatic Neoplasms/metabolism , Rats , Thyroid Neoplasms/metabolism , White Matter/drug effects , White Matter/metabolism
12.
J Biophotonics ; 15(1): e202100266, 2022 01.
Article in English | MEDLINE | ID: mdl-34783185

ABSTRACT

Near-infrared photoimmunotherapy (NIR-PIT) induces immediate cell death after irradiation with near-infrared (NIR) light. Acute therapeutic effects caused by NIR-PIT before the change of tumor size is essential to be monitored by imaging modalities. We summarized and compared the imaging modalities for evaluating acute therapeutic effects after NIR-PIT, and aimed to provide a better understanding of advantages and disadvantages of each modality for evaluation in clinical applications. Fluorescence imaging and fluorescence lifetime, with high resolution, remains high accumulation of fluorescence dyes in the normal organs. High resolution and noninvasiveness are the major advantages of magnetic resonance imaging, while 18 F-fluorodeoxyglucose positron emission tomography provides information about the glucose metabolism. Optical coherence tomography provided more information about the blood vessels. Thus, all of the imaging modalities play an important role in evaluating acute therapeutic effects after NIR-PIT. Clinicians should choose suitable modality according to specific purpose and conditions in clinical application.


Subject(s)
Immunotherapy , Phototherapy , Animals , Cell Line, Tumor , Mice , Mice, Nude , Xenograft Model Antitumor Assays
13.
Can J Infect Dis Med Microbiol ; 2021: 4005327, 2021.
Article in English | MEDLINE | ID: mdl-34876945

ABSTRACT

Multidrug resistance (MDR) due to enhanced drug efflux activity of tumor cells can severely impact the efficacy of antitumor therapies. We recently showed that increased activity of the efflux transporter P-glycoprotein (P-gp) associated with activation of Snail transcriptional regulators may be mediated mainly by moesin in lung cancer cells. Here, we aimed to systematically evaluate the relationships among mRNA expression levels of efflux transporters (P-gp, breast cancer resistance protein (BCRP), and multidrug resistance-associated protein 2 (MRP2)), scaffold proteins (ezrin (Ezr), radixin (Rdx), and moesin (Msn); ERM proteins), and SNAI family members (Snail, Slug, and Smac) in clinical lung cancer and noncancer samples. We found high correlations between relative (cancer/noncancer) mRNA expression levels of Snail and Msn, Msn and P-gp, Slug and MRP2, and Smuc and BCRP. These findings support our previous conclusion that Snail regulates P-gp activity via Msn and further suggest that Slug and Smuc may contribute to the functional regulation of MRP2 and BCRP, respectively, in lung cancer cells. This trial is registered with UMIN000023923.

14.
Xenobiotica ; 51(7): 771-777, 2021 Jul.
Article in English | MEDLINE | ID: mdl-33947307

ABSTRACT

We developed an assay system to evaluate the cytochrome P450 (CYP) 3A4-inhibitory activity of compounds, taking account of their cellular permeability, using intestine-derived cell lines pre-treated with the CYP3A4 inducer 1α,25-dihydroxy-vitamin D3 (250 nM).Ketoconazole (KTZ), saquinavir (SQV), naringin, naringenin (NGE), bergamottin (BG), 6',7'-dihydroxybergamottin (DHBG), epigallocatechin gallate (EGCG), and resveratrol (RES) were evaluated as known CYP3A4 inhibitors. The apparent IC50 (IC50,app) values of known inhibitors were determined in Caco-2 cells with 10 µM midazolam as a CYP3A4 substrate, and compared with the IC50 values in a human liver microsome assay.SQV and BG with high lipophilicity and good membrane permeability show similar concentrations inside and outside the cells, and consequently IC50,app and IC50 are similar.KTZ, EGCG, DHBG, NGE, and RES showed a difference between IC50 and IC50,app. This is considered to result from a difference between the intracellular and extracellular concentrations of the compound, which is likely due to the involvement of efflux and/or influx transporters.This method to evaluate CYP inhibition taking account of membrane permeation should be helpful to assess the potential clinical relevance of drug-drug or drug-food interactions in the gastrointestinal tract.


Subject(s)
Cytochrome P-450 CYP3A , Cytochrome P-450 Enzyme System , Caco-2 Cells , Humans , Intestines , Microsomes, Liver , Vitamin D
15.
Cancers (Basel) ; 12(11)2020 Nov 12.
Article in English | MEDLINE | ID: mdl-33198344

ABSTRACT

One factor contributing to the malignancy of cancer cells is the acquisition of drug resistance during chemotherapy via increased expression of efflux transporters, such as P-glycoprotein (P-gp), multidrug resistance-associated proteins (MRPs), and breast cancer resistance protein (BCRP). These transporters operate at the cell membrane, and are anchored in place by the scaffold proteins ezrin (Ezr), radixin (Rdx), and moesin (Msn) (ERM proteins), which regulate their functional activity. The identity of the regulatory scaffold protein(s) differs depending upon the transporter, and also upon the tissue in which it is expressed, even for the same transporter. Another factor contributing to malignancy is metastatic ability. Epithelial-mesenchymal transition (EMT) is the first step in the conversion of primary epithelial cells into mesenchymal cells that can be transported to other organs via the blood. The SNAI family of transcriptional regulators triggers EMT, and SNAI expression is used is an indicator of malignancy. Furthermore, EMT has been suggested to be involved in drug resistance, since drug excretion from cancer cells is promoted during EMT. We showed recently that ERM proteins are induced by a member of the SNAI family, Snail. Here, we first review recent progress in research on the relationship between efflux transporters and scaffold proteins, including the question of tissue specificity. In the second part, we review the relationship between ERM scaffold proteins and the transcriptional regulatory factors that induce their expression.

16.
PLoS One ; 15(10): e0232438, 2020.
Article in English | MEDLINE | ID: mdl-33119612

ABSTRACT

Drug-drug interaction was suggested to have played a role in the recent death due to cardiac arrest of a patient taking pimozide, sertraline and aripiprazole antipsychotic/antidepressant combination therapy. Here, we investigated the possible involvement of P-glycoprotein (P-gp)-mediated interaction among these drugs, using in vitro methods. ATPase assay confirmed that pimozide is a P-gp substrate, and might act as a P-gp inhibitor at higher concentrations. The maximum transport rate (Jmax) and half-saturation concentration (Kt) for the carrier-mediated transport estimated by means of pimozide efflux assay using P-gp-overexpressing LLC-GA5-CoL150 cells were 84.9 ± 8.9 pmol/min/mg protein, and 10.6 ± 4.7 µM, respectively. These results indicate that pimozide is a good P-gp substrate, and it appears to have the potential to cause drug-drug interactions in the digestive tract at clinically relevant gastrointestinal concentrations. Moreover, sertraline or aripiprazole significantly decreased the efflux ratio of pimozide in LLC-GA5-CoL150 cells. Transport studies using Caco-2 cell monolayers were consistent with the results in LLC-GA5-CoL150 cells, and indicate that P-gp-mediated drug-drug interaction may occur in the gastrointestinal tract. Thus, P-gp inhibition by sertraline and/or aripiprazole may increase the gastrointestinal permeability of co-administered pimozide, resulting in an increased blood concentration of pimozide, which is known to be associated with an increased risk of QT prolongation, a life-threatening side effect.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/antagonists & inhibitors , Aripiprazole/pharmacology , Pimozide/pharmacokinetics , Sertraline/pharmacology , Animals , Biological Transport , Caco-2 Cells , Drug Interactions , Gastrointestinal Absorption , Humans , LLC-PK1 Cells , Swine
17.
Biomedicines ; 8(10)2020 Sep 23.
Article in English | MEDLINE | ID: mdl-32977664

ABSTRACT

This paper reviews the usefulness, current status, and potential of primary human hepatocytes (PHHs) in three-dimensional (3D) cultures, also known as spheroids, in the field of pharmacokinetics (PK). Predicting PK and toxicity means pharmaceutical research can be conducted more efficiently. Various in vitro test systems using human hepatocytes have been proposed as tools to detect hepatic toxicity at an early stage in the drug development process. However, such evaluation requires long-term, low-level exposure to the test compound, and conventional screening systems such as PHHs in planar (2D) culture, in which the cells can only survive for a few days, are unsuitable for this purpose. In contrast, spheroids consisting of PHH are reported to retain the functional characteristics of human liver for at least 35 days. Here, we introduce a fundamental PK and toxicity assessment model of PHH spheroids and describe their applications for assessing species-specific metabolism, enzyme induction, and toxicity, focusing on our own work in these areas. The studies outlined in this paper may provide important information for pharmaceutical companies to reduce termination of development of drug candidates.

18.
Drug Metab Pharmacokinet ; 35(2): 201-206, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32037158

ABSTRACT

Some drugs induce cytochrome P450s (CYPs), and thus may cause increased metabolic toxicity from concomitantly administered agents. Hence, we need a means of evaluating the potential of compounds to cause drug-induced liver injury (DILI) under conditions where inducers of CYP1A2 are present. Here, we present a system for evaluating CYP1A2-mediated metabolic toxicity using three-dimensional (3D) cultures of primary human hepatocyte spheroids treated with the CYP1A2 inducer omeprazole (OPZ). As a test substrate, we employed dacarbazine (DTIC), which causes toxicity during the metabolic process. We measured cell viability, CYP1A2 mRNA expression level and metabolism of DTIC, as well as several markers of hepatic function, i.e. albumin secretion, urea secretion, and aspartate aminotransferase (AST) leakage. Markers of hepatic function were significantly decreased by addition of OPZ and DTIC even under conditions where the cell viability was largely unchanged. This experimental system sensitively detected CYP1A2-mediated metabolic toxicity. Therefore, the developed system should be helpful for evaluating the potential of compounds to cause DILI under conditions where inducers of CYP1A2 are present.


Subject(s)
Cytochrome P-450 CYP1A2/metabolism , Dacarbazine/adverse effects , Hepatocytes/drug effects , Spheroids, Cellular/drug effects , Cell Survival/drug effects , Cells, Cultured , Dose-Response Relationship, Drug , Hepatocytes/metabolism , Humans , Omeprazole , Spheroids, Cellular/metabolism , Structure-Activity Relationship
19.
Xenobiotica ; 50(3): 261-269, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31173561

ABSTRACT

1. We investigated the structure-activity relationship of 31 kinds of synthesized atorvastatin esters, thioesters, amides and lactone, selected as prodrug models, for metabolic activation by microsomes and hydrolases.2. The susceptibility to human carboxylesterase 1 (hCES1) was influenced not only by the size of the acyl group and alkoxy group but also by the degree of steric crowding around the alkoxy group.3. The susceptibility to human carboxylesterase 2 (hCES2) increased with a decrease in electron density around the alkoxy group of the substrate.4. Lactone was specifically hydrolyzed by paraoxonase 3 (PON3).5. These findings should be useful in prodrug design for controlling metabolic activation.


Subject(s)
Atorvastatin/metabolism , Hydrolases/metabolism , Activation, Metabolic , Carboxylesterase , Carboxylic Ester Hydrolases , Microsomes, Liver/metabolism , Prodrugs , Structure-Activity Relationship , Substrate Specificity
20.
Biochem Biophys Res Commun ; 520(1): 166-170, 2019 11 26.
Article in English | MEDLINE | ID: mdl-31585733

ABSTRACT

Raised brain levels of testosterone (Tes), as well as single nucleotide polymorphisms of P-glycoprotein (P-gp) that cause impaired transport function, are associated with increased risk of suicide. Here, we examined whether Tes and its precursors and metabolites are substrates of P-gp, using several in vitro methods. In ATPase assay, increased ATP consumption was observed as the concentrations of Tes, dihydroepiandrosterone (Dhea), androstenedione (Ado), and dihydrotestosterone (Dht), but not androstenediol (Adol), were increased, suggesting that these four androgens are transported by P-gp. Furthermore, Tes and Ado, though not Dhea or Dht, increased the intracellular accumulation of Rhodamine 123 (Rho123), a typical substrate of P-gp, in a P-gp-overexpressing cell line, suggesting that they inhibit Rho123 efflux and thus are substrates or inhibitors of P-gp. A membrane permeability study using P-gp-overexpressing cells in Transwell inserts indicated that the permeability coefficients of both Ado and Tes in the basal-to-apical direction (excretion) are significantly higher than those in the apical-to-basal direction. Moreover, transport of both Ado and Tes was significantly suppressed by verapamil, a typical P-gp inhibitor. These results indicate that Tes and Ado are endogenous substrates of P-gp. These findings provide a physiological basis for understanding previously reported associations of P-gp dysfunction and raised brain levels of Tes with suicidal behavior, and may open up new possibilities for treating patients at risk of suicide.


Subject(s)
Androstenedione/metabolism , Brain/metabolism , Testosterone/metabolism , ATP Binding Cassette Transporter, Subfamily B/metabolism , Adenosine Triphosphatases/metabolism , Animals , Cell Culture Techniques , Cell Line , Cell Membrane/drug effects , Cell Membrane Permeability/drug effects , Dose-Response Relationship, Drug , Humans , Protein Binding , Rhodamine 123/chemistry , Risk , Suicide , Swine , Verapamil/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...