Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Appl Clin Med Phys ; 20(1): 31-36, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30387294

ABSTRACT

PURPOSE: The QA team of the Japan carbon-ion radiation oncology study group (J-CROS) was organized in 2015 to enhance confidence in the accuracy of clinical dosimetry and ensure that the facility QA procedures are adequate. The team conducted onsite dosimetry audits in all the carbon-ion radiation therapy centers in Japan. MATERIALS AND METHODS: A special phantom was fabricated for the onsite dosimetry audit. Target volumes such as the GTV, CTV, and PTV were contoured to the obtained CT images, and two plans with different isocenter depths were created. The dose at the isocenter was measured by an ionization chamber, in the onsite audit and compared with the calculated dose. RESULTS: For all the centers, the average of the percentage ratio between the measured and calculated doses (measured/calculated) was 0.5% (-2.7% to +2.6%) and the standard deviation, 1.7%. In all the centers, the beams were within the set tolerance level of 3%. CONCLUSIONS: The audit demonstrated that the dose at a single point in the water phantom was within tolerance, but it is a big step to say that all doses are correct. In addition, this external dosimetry audit encouraged centers to improve the quality of their dosimetry systems.


Subject(s)
Clinical Trials as Topic , Heavy Ion Radiotherapy , Neoplasms/radiotherapy , Phantoms, Imaging , Quality Assurance, Health Care/standards , Radiometry/standards , Radiotherapy Planning, Computer-Assisted/methods , Algorithms , Humans , Radiation Dosage , Radiometry/methods
2.
Med Phys ; 42(9): 5188-94, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26328969

ABSTRACT

PURPOSE: A conventional broad beam method is applied to carbon ion radiotherapy at Gunma University Heavy Ion Medical Center. According to this method, accelerated carbon ions are scattered by various beam line devices to form 3D dose distribution. The physical dose per monitor unit (d/MU) at the isocenter, therefore, depends on beam line parameters and should be calibrated by a measurement in clinical practice. This study aims to develop a calculation algorithm for d/MU using beam line parameters. METHODS: Two major factors, the range shifter dependence and the field aperture effect, are measured via PinPoint chamber in a water phantom, which is an identical setup as that used for monitor calibration in clinical practice. An empirical monitor calibration method based on measurement results is developed using a simple algorithm utilizing a linear function and a double Gaussian pencil beam distribution to express the range shifter dependence and the field aperture effect. RESULTS: The range shifter dependence and the field aperture effect are evaluated to have errors of 0.2% and 0.5%, respectively. The proposed method has successfully estimated d/MU with a difference of less than 1% with respect to the measurement results. Taking the measurement deviation of about 0.3% into account, this result is sufficiently accurate for clinical applications. CONCLUSIONS: An empirical procedure to estimate d/MU with a simple algorithm is established in this research. This procedure allows them to use the beam time for more treatments, quality assurances, and other research endeavors.


Subject(s)
Heavy Ion Radiotherapy/methods , Algorithms , Humans , Phantoms, Imaging , Radiotherapy Dosage
3.
Phys Med Biol ; 60(15): 5833-52, 2015 Aug 07.
Article in English | MEDLINE | ID: mdl-26161563

ABSTRACT

In the development of an external radiotherapy treatment planning system, the output factor (OPF) is an important value for the monitor unit calculations. We developed a proton OPF calculation model with consideration for the collimator aperture edge to account for the dependence of the OPF on the collimator aperture and distance in proton beam therapy. Five parameters in the model were obtained by fitting with OPFs measured by a pinpoint chamber with the circular radiation fields of various field radii and collimator distances. The OPF model calculation using the fitted model parameters could explain the measurement results to within 1.6% error in typical proton treatment beams with 6- and 12 cm SOBP widths through a range shifter and a circular aperture more than 10.6 mm in radius. The calibration depth dependences of the model parameters were approximated by linear or quadratic functions. The semi-analytical OPF model calculation was tested with various MLC aperture shapes that included circles of various sizes as well as a rectangle, parallelogram, and L-shape for an intermediate proton treatment beam condition. The pre-calculated OPFs agreed well with the measured values, to within 2.7% error up to 620 mm in the collimator distance, though the maximum difference was 5.1% in the case of the largest collimator distance of 740 mm. The OPF calculation model would allow more accurate monitor unit calculations for therapeutic proton beams within the expected range of collimator conditions in clinical use.


Subject(s)
Algorithms , Computer Simulation , Models, Theoretical , Proton Therapy , Radiometry/methods , Radiotherapy Planning, Computer-Assisted/methods , Calibration , Humans , Models, Biological , Monte Carlo Method , Radiotherapy Dosage , Relative Biological Effectiveness , Scattering, Radiation
4.
Phys Med Biol ; 60(1): 359-74, 2015 Jan 07.
Article in English | MEDLINE | ID: mdl-25503686

ABSTRACT

In radiation therapy, it is necessary to preset a monitor unit in an irradiation control system to deliver a prescribed absolute dose to a reference point in the planning target volume. The purpose of this study was to develop a model-based monitor unit calculation method for proton-beam therapy with a single-ring wobbling system. The absorbed dose at a calibration point per monitor unit had been measured for each beam-specific measurement condition without a patient-specific collimator or range compensator before proton therapeutic irradiation at Shizuoka Cancer Center. In this paper, we propose a simplified dose output model to obtain the output ratio between a beam-specific dose and a reference field dose, from which a monitor unit for the proton treatment could be derived without beam-specific measurements. The model parameters were determined to fit some typical data measured in a proton treatment room, called a Gantry 1 course. Then, the model calculation was compared with 5456 dose output ratios that had been measured for 150-, 190- and 220 MeV therapeutic proton beams in two treatment rooms over the past decade. The mean value and standard deviation of the difference between the measurement and the model calculation were respectively 0.00% and 0.27% for the Gantry 1 course, and -0.25% and 0.35% for the Gantry 2 course. The model calculation was in good agreement with the measured beam-specific doses, within 1%, except for conditions less frequently used for treatment. The small variation for the various beam conditions shows the high long-term reproducibility of the measurement and high degree of compatibility of the two treatment rooms. Therefore, the model was expected to assure the setting value of the dose monitor for treatment, to save the effort required for beam-specific measurement, and to predict the dose output for new beam conditions in the future.


Subject(s)
Models, Theoretical , Phantoms, Imaging , Proton Therapy/instrumentation , Radiometry/methods , Algorithms , Calibration , Humans , Radiotherapy Dosage , Reproducibility of Results , Scattering, Radiation
5.
Med Phys ; 34(6): 1907-10, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17654892

ABSTRACT

We report our experience with extended usage of range compensators in heavy-ion radiotherapy with broad beams to lighten the management task of the beam data library, which is a collection of the standard beams to be referenced in treatment planning. Partly due to interference between lateral spreading and range shifting, as many as hundreds of beam entries may be necessary to cover all the possible clinical situations. We have introduced downstream secondary range shifting with a range compensator to reduce the interference and consequently to simplify the library. In our case, 30% reduction in beam entries is achieved without significantly degrading the beam quality nor increasing the material consumption by more than 3%, which is experimentally verified with carbon-ion beams or statistically estimated from the clinical records.


Subject(s)
Databases, Factual , Heavy Ion Radiotherapy , Information Storage and Retrieval/methods , Radiometry/instrumentation , Radiotherapy Planning, Computer-Assisted/methods , Radiotherapy, High-Energy/instrumentation , Equipment Design , Equipment Failure Analysis , Radiometry/methods , Radiotherapy Dosage , Radiotherapy, High-Energy/methods
6.
Phys Med Biol ; 47(6): 935-45, 2002 Mar 21.
Article in English | MEDLINE | ID: mdl-11936179

ABSTRACT

From the standpoint of quality assurance in radiotherapy, it is very important to compare the dose distributions realized by an irradiation system with the distribution planned by a treatment planning system. To compare the two dose distributions, it is necessary to convert the dose distributions on CT images to distributions in a water phantom or convert the measured dose distributions to distributions on CT images. Especially in heavy-ion radiotherapy, it is reasonable to show the biologically equivalent dose distribution on the CT images. We developed tools for the visualization and comparison of these distributions in order to check the therapeutic beam for each patient at the National Institute of Radiological Sciences (NIRS). To estimate the distribution in a patient, the dose is derived from the measurement by mapping it on a CT-image. Fitting the depth-dose curve to the calculated SOBP curve also gives biologically equivalent dose distributions in the case of a carbon beam. Once calculated, dose distribution information can be easily handled to make a comparison with the planned distribution and display it on a grey-scale CT-image. Quantitative comparisons of dose distributions can be made with anatomical information, which also gives a verification of the irradiation system in a very straightforward way.


Subject(s)
Radiotherapy Planning, Computer-Assisted/methods , Tomography, X-Ray Computed/methods , Humans , Models, Statistical , Phantoms, Imaging , Radiometry , Software
SELECTION OF CITATIONS
SEARCH DETAIL
...