Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
Add more filters










Publication year range
1.
Microb Genom ; 10(6)2024 Jun.
Article in English | MEDLINE | ID: mdl-38860884

ABSTRACT

As public health laboratories expand their genomic sequencing and bioinformatics capacity for the surveillance of different pathogens, labs must carry out robust validation, training, and optimization of wet- and dry-lab procedures. Achieving these goals for algorithms, pipelines and instruments often requires that lower quality datasets be made available for analysis and comparison alongside those of higher quality. This range of data quality in reference sets can complicate the sharing of sub-optimal datasets that are vital for the community and for the reproducibility of assays. Sharing of useful, but sub-optimal datasets requires careful annotation and documentation of known issues to enable appropriate interpretation, avoid being mistaken for better quality information, and for these data (and their derivatives) to be easily identifiable in repositories. Unfortunately, there are currently no standardized attributes or mechanisms for tagging poor-quality datasets, or datasets generated for a specific purpose, to maximize their utility, searchability, accessibility and reuse. The Public Health Alliance for Genomic Epidemiology (PHA4GE) is an international community of scientists from public health, industry and academia focused on improving the reproducibility, interoperability, portability, and openness of public health bioinformatic software, skills, tools and data. To address the challenges of sharing lower quality datasets, PHA4GE has developed a set of standardized contextual data tags, namely fields and terms, that can be included in public repository submissions as a means of flagging pathogen sequence data with known quality issues, increasing their discoverability. The contextual data tags were developed through consultations with the community including input from the International Nucleotide Sequence Data Collaboration (INSDC), and have been standardized using ontologies - community-based resources for defining the tag properties and the relationships between them. The standardized tags are agnostic to the organism and the sequencing technique used and thus can be applied to data generated from any pathogen using an array of sequencing techniques. The tags can also be applied to synthetic (lab created) data. The list of standardized tags is maintained by PHA4GE and can be found at https://github.com/pha4ge/contextual_data_QC_tags. Definitions, ontology IDs, examples of use, as well as a JSON representation, are provided. The PHA4GE QC tags were tested, and are now implemented, by the FDA's GenomeTrakr laboratory network as part of its routine submission process for SARS-CoV-2 wastewater surveillance. We hope that these simple, standardized tags will help improve communication regarding quality control in public repositories, in addition to making datasets of variable quality more easily identifiable. Suggestions for additional tags can be submitted to PHA4GE via the New Term Request Form in the GitHub repository. By providing a mechanism for feedback and suggestions, we also expect that the tags will evolve with the needs of the community.


Subject(s)
Computational Biology , Public Health , Quality Control , Humans , Computational Biology/methods , Information Dissemination/methods , Reproducibility of Results , Molecular Sequence Annotation/methods , Genomics/methods , Software
2.
Nucleic Acids Res ; 52(D1): D134-D137, 2024 Jan 05.
Article in English | MEDLINE | ID: mdl-37889039

ABSTRACT

GenBank® (https://www.ncbi.nlm.nih.gov/genbank/) is a comprehensive, public database that contains 25 trillion base pairs from over 3.7 billion nucleotide sequences for 557 000 formally described species. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. Recent updates include policies for including spatio-temporal metadata, clarified documentation for GenBank data processing, enhanced foreign contamination screening tools, new processes in the Submission Portal, migration of Entrez Genome and Assembly displays into NCBI Datasets, and the impending retirement of tbl2asn, replaced by table2asn.


Subject(s)
Databases, Nucleic Acid , Genomics , Base Sequence , Internet , Humans
3.
Microb Genom ; 9(12)2023 Dec.
Article in English | MEDLINE | ID: mdl-38085797

ABSTRACT

Fast, efficient public health actions require well-organized and coordinated systems that can supply timely and accurate knowledge. Public databases of pathogen genomic data, such as the International Nucleotide Sequence Database Collaboration (INSDC), have become essential tools for efficient public health decisions. However, these international resources began primarily for academic purposes, rather than for surveillance or interventions. Now, queries need to access not only the whole genomes of multiple pathogens but also make connections using robust contextual metadata to identify issues of public health relevance. Databases that over time developed a patchwork of submission formats and requirements need to be consistently organized and coordinated internationally to allow effective searches.To help resolve these issues, we propose a common pathogen data structure called the Pathogen Data Object Model (DOM) that will formalize the minimum pieces of sequence data and contextual data necessary for general public health uses, while recognizing that submitters will likely withhold a wide range of non-public contextual data. Further, we propose contributors use the Pathogen DOM for all pathogen submissions (bacterial, viral, fungal, and parasites), which will simplify data submissions and provide a consistent and transparent data structure for downstream data analyses. We also highlight how improved submission tools can support the Pathogen DOM, offering users additional easy-to-use methods to ensure this structure is followed.


Subject(s)
Nucleotides , Public Health , Base Sequence , Genomics/methods , Databases, Nucleic Acid
6.
Nucleic Acids Res ; 51(D1): D141-D144, 2023 01 06.
Article in English | MEDLINE | ID: mdl-36350640

ABSTRACT

GenBank® (https://www.ncbi.nlm.nih.gov/genbank/) is a comprehensive, public database that contains 19.6 trillion base pairs from over 2.9 billion nucleotide sequences for 504 000 formally described species. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. Recent updates include resources for data from the SARS-CoV-2 virus, NCBI Datasets, BLAST ClusteredNR, the Submission Portal, table2asn, a Foreign Contamination Screening tool and BioSample.


Subject(s)
Databases, Nucleic Acid , Humans , COVID-19/genetics , Genomics , SARS-CoV-2/genetics
7.
Database (Oxford) ; 20222022 03 01.
Article in English | MEDLINE | ID: mdl-35230423

ABSTRACT

Rapid response to the current coronavirus disease 2019 (COVID-19) pandemic requires fast dissemination of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomic sequence data in order to align diagnostic tests and vaccines with the natural evolution of the virus as it spreads through the world. To facilitate this, the National Library of Medicine's National Center for Biotechnology Information developed an automated pipeline for the deposition and quick processing of SARS-CoV-2 genome assemblies into GenBank for the user community. The pipeline ensures the collection of contextual information about the virus source, assesses sequence quality and annotates descriptive biological features, such as protein-coding regions and mature peptides. The process promotes standardized nomenclature and creates and publishes fully processed GenBank files within minutes of deposition. The software has processed and published 982 454 annotated SARS-CoV-2 sequences, as of 21 October 2021. This development addresses the needs of the scientific community as the sequencing of SARS-CoV-2 genomes increases and will facilitate unrestricted access to and usability of SARS-CoV-2 genomic sequence data, providing important reagents for scientific and public health activities in response to the COVID-19 pandemic. Database URL https://submit.ncbi.nlm.nih.gov/sarscov2/genbank/.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/genetics , Databases, Nucleic Acid , Genome, Viral/genetics , Humans , Pandemics , SARS-CoV-2/genetics
9.
Gigascience ; 112022 02 16.
Article in English | MEDLINE | ID: mdl-35169842

ABSTRACT

BACKGROUND: The Public Health Alliance for Genomic Epidemiology (PHA4GE) (https://pha4ge.org) is a global coalition that is actively working to establish consensus standards, document and share best practices, improve the availability of critical bioinformatics tools and resources, and advocate for greater openness, interoperability, accessibility, and reproducibility in public health microbial bioinformatics. In the face of the current pandemic, PHA4GE has identified a need for a fit-for-purpose, open-source SARS-CoV-2 contextual data standard. RESULTS: As such, we have developed a SARS-CoV-2 contextual data specification package based on harmonizable, publicly available community standards. The specification can be implemented via a collection template, as well as an array of protocols and tools to support both the harmonization and submission of sequence data and contextual information to public biorepositories. CONCLUSIONS: Well-structured, rich contextual data add value, promote reuse, and enable aggregation and integration of disparate datasets. Adoption of the proposed standard and practices will better enable interoperability between datasets and systems, improve the consistency and utility of generated data, and ultimately facilitate novel insights and discoveries in SARS-CoV-2 and COVID-19. The package is now supported by the NCBI's BioSample database.


Subject(s)
COVID-19 , SARS-CoV-2 , Genomics , Humans , Metadata , Public Health , Reproducibility of Results
10.
Methods Mol Biol ; 2443: 1-25, 2022.
Article in English | MEDLINE | ID: mdl-35037198

ABSTRACT

GenBank® and the Sequence Read Archive (SRA) are comprehensive databases of publicly available DNA sequences. GenBank contains data for 480,000 named organisms, more than 176,000 within the embryophyta, obtained through submissions from individual laboratories and batch submissions from large-scale sequencing projects. SRA contains reads from next-generation sequencing studies from over 110,000 species. Daily data exchange with the European Nucleotide Archive (ENA) in Europe and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage for both databases. GenBank and SRA data are accessible through the NCBI Entrez retrieval system that integrates these data with other data at NCBI, such as genomes, taxonomy, and the biomedical literature. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. Usage scenarios for both GenBank and SRA ranging from local and cloud analyses to online analyses supported by the NCBI web-based tools are discussed. Both GenBank and SRA, along with their related retrieval and analysis services, are available from the NCBI homepage at www.ncbi.nlm.nih.gov .


Subject(s)
Databases, Nucleic Acid , Genomics , Europe , High-Throughput Nucleotide Sequencing , Internet
11.
Nucleic Acids Res ; 50(D1): D161-D164, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34850943

ABSTRACT

GenBank® (https://www.ncbi.nlm.nih.gov/genbank/) is a comprehensive, public database that contains 15.3 trillion base pairs from over 2.5 billion nucleotide sequences for 504 000 formally described species. Recent updates include resources for data from the SARS-CoV-2 virus, including a SARS-CoV-2 landing page, NCBI Datasets, NCBI Virus and the Submission Portal. We also discuss upcoming changes to GI identifiers, a new data management interface for BioProject, and advice for providing contextual metadata in submissions.


Subject(s)
Databases, Nucleic Acid , Viruses/genetics , Genome, Viral , National Library of Medicine (U.S.) , SARS-CoV-2/genetics , United States , User-Computer Interface
12.
BMC Bioinformatics ; 22(1): 400, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34384346

ABSTRACT

BACKGROUND: The DNA sequences encoding ribosomal RNA genes (rRNAs) are commonly used as markers to identify species, including in metagenomics samples that may combine many organismal communities. The 16S small subunit ribosomal RNA (SSU rRNA) gene is typically used to identify bacterial and archaeal species. The nuclear 18S SSU rRNA gene, and 28S large subunit (LSU) rRNA gene have been used as DNA barcodes and for phylogenetic studies in different eukaryote taxonomic groups. Because of their popularity, the National Center for Biotechnology Information (NCBI) receives a disproportionate number of rRNA sequence submissions and BLAST queries. These sequences vary in quality, length, origin (nuclear, mitochondria, plastid), and organism source and can represent any region of the ribosomal cistron. RESULTS: To improve the timely verification of quality, origin and loci boundaries, we developed Ribovore, a software package for sequence analysis of rRNA sequences. The ribotyper and ribosensor programs are used to validate incoming sequences of bacterial and archaeal SSU rRNA. The ribodbmaker program is used to create high-quality datasets of rRNAs from different taxonomic groups. Key algorithmic steps include comparing candidate sequences against rRNA sequence profile hidden Markov models (HMMs) and covariance models of rRNA sequence and secondary-structure conservation, as well as other tests. Nine freely available blastn rRNA databases created and maintained with Ribovore are used for checking incoming GenBank submissions and used by the blastn browser interface at NCBI. Since 2018, Ribovore has been used to analyze more than 50 million prokaryotic SSU rRNA sequences submitted to GenBank, and to select at least 10,435 fungal rRNA RefSeq records from type material of 8350 taxa. CONCLUSION: Ribovore combines single-sequence and profile-based methods to improve GenBank processing and analysis of rRNA sequences. It is a standalone, portable, and extensible software package for the alignment, classification and validation of rRNA sequences. Researchers planning on submitting SSU rRNA sequences to GenBank are encouraged to download and use Ribovore to analyze their sequences prior to submission to determine which sequences are likely to be automatically accepted into GenBank.


Subject(s)
Databases, Nucleic Acid , RNA, Ribosomal , DNA, Ribosomal , Phylogeny , RNA, Ribosomal, 16S/genetics , RNA, Ribosomal, 18S/genetics , Sequence Analysis, RNA
13.
Nucleic Acids Res ; 49(D1): D92-D96, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33196830

ABSTRACT

GenBank® (https://www.ncbi.nlm.nih.gov/genbank/) is a comprehensive, public database that contains 9.9 trillion base pairs from over 2.1 billion nucleotide sequences for 478 000 formally described species. Daily data exchange with the European Nucleotide Archive and the DNA Data Bank of Japan ensures worldwide coverage. Recent updates include new resources for data from the SARS-CoV-2 virus, updates to the NCBI Submission Portal and associated submission wizards for dengue and SARS-CoV-2 viruses, new taxonomy queries for viruses and prokaryotes, and simplified submission processes for EST and GSS sequences.


Subject(s)
Computational Biology/statistics & numerical data , Databases, Nucleic Acid , Genomics/methods , SARS-CoV-2/genetics , Sequence Analysis, DNA/methods , Animals , COVID-19/epidemiology , COVID-19/virology , Computational Biology/methods , Humans , Information Storage and Retrieval/methods , Internet , Molecular Sequence Annotation/methods , Pandemics
14.
Nucleic Acids Res ; 49(D1): D121-D124, 2021 01 08.
Article in English | MEDLINE | ID: mdl-33166387

ABSTRACT

The International Nucleotide Sequence Database Collaboration (INSDC; http://www.insdc.org/) has been the core infrastructure for collecting and providing nucleotide sequence data and metadata for >30 years. Three partner organizations, the DNA Data Bank of Japan (DDBJ) at the National Institute of Genetics in Mishima, Japan; the European Nucleotide Archive (ENA) at the European Molecular Biology Laboratory's European Bioinformatics Institute (EMBL-EBI) in Hinxton, UK; and GenBank at National Center for Biotechnology Information (NCBI), National Library of Medicine, National Institutes of Health in Bethesda, Maryland, USA have been collaboratively maintaining the INSDC for the benefit of not only science but all types of community worldwide.


Subject(s)
Databases, Nucleic Acid , Metadata/statistics & numerical data , Nucleotides/genetics , Sequence Analysis, DNA/statistics & numerical data , Sequence Analysis, RNA/statistics & numerical data , Academies and Institutes , Base Sequence , Europe , High-Throughput Nucleotide Sequencing/statistics & numerical data , Humans , International Cooperation , Japan , Nucleotides/metabolism , United States
15.
Database (Oxford) ; 20202020 01 01.
Article in English | MEDLINE | ID: mdl-32761142

ABSTRACT

The National Center for Biotechnology Information (NCBI) Taxonomy includes organism names and classifications for every sequence in the nucleotide and protein sequence databases of the International Nucleotide Sequence Database Collaboration. Since the last review of this resource in 2012, it has undergone several improvements. Most notable is the shift from a single SQL database to a series of linked databases tied to a framework of data called NameBank. This means that relations among data elements can be adjusted in more detail, resulting in expanded annotation of synonyms, the ability to flag names with specific nomenclatural properties, enhanced tracking of publications tied to names and improved annotation of scientific authorities and types. Additionally, practices utilized by NCBI Taxonomy curators specific to major taxonomic groups are described, terms peculiar to NCBI Taxonomy are explained, external resources are acknowledged and updates to tools and other resources are documented. Database URL: https://www.ncbi.nlm.nih.gov/taxonomy.


Subject(s)
Classification , Database Management Systems , Databases, Genetic , Animals , Bacteria/genetics , Humans , National Library of Medicine (U.S.) , Plants/genetics , United States , Viruses/genetics
17.
BMC Bioinformatics ; 21(1): 211, 2020 May 24.
Article in English | MEDLINE | ID: mdl-32448124

ABSTRACT

BACKGROUND: GenBank contains over 3 million viral sequences. The National Center for Biotechnology Information (NCBI) previously made available a tool for validating and annotating influenza virus sequences that is used to check submissions to GenBank. Before this project, there was no analogous tool in use for non-influenza viral sequence submissions. RESULTS: We developed a system called VADR (Viral Annotation DefineR) that validates and annotates viral sequences in GenBank submissions. The annotation system is based on the analysis of the input nucleotide sequence using models built from curated RefSeqs. Hidden Markov models are used to classify sequences by determining the RefSeq they are most similar to, and feature annotation from the RefSeq is mapped based on a nucleotide alignment of the full sequence to a covariance model. Predicted proteins encoded by the sequence are validated with nucleotide-to-protein alignments using BLAST. The system identifies 43 types of "alerts" that (unlike the previous BLAST-based system) provide deterministic and rigorous feedback to researchers who submit sequences with unexpected characteristics. VADR has been integrated into GenBank's submission processing pipeline allowing for viral submissions passing all tests to be accepted and annotated automatically, without the need for any human (GenBank indexer) intervention. Unlike the previous submission-checking system, VADR is freely available (https://github.com/nawrockie/vadr) for local installation and use. VADR has been used for Norovirus submissions since May 2018 and for Dengue virus submissions since January 2019. Since March 2020, VADR has also been used to check SARS-CoV-2 sequence submissions. Other viruses with high numbers of submissions will be added incrementally. CONCLUSION: VADR improves the speed with which non-flu virus submissions to GenBank can be checked and improves the content and quality of the GenBank annotations. The availability and portability of the software allow researchers to run the GenBank checks prior to submitting their viral sequences, and thereby gain confidence that their submissions will be accepted immediately without the need to correspond with GenBank staff. Reciprocally, the adoption of VADR frees GenBank staff to spend more time on services other than checking routine viral sequence submissions.


Subject(s)
Betacoronavirus , Coronavirus Infections , Databases, Nucleic Acid , Molecular Sequence Annotation , Pandemics , Pneumonia, Viral , Software , Betacoronavirus/genetics , COVID-19 , Coronavirus Infections/genetics , DNA Viruses , Genomics , Humans , Molecular Sequence Annotation/standards , Pneumonia, Viral/genetics , SARS-CoV-2 , Viruses
18.
Nucleic Acids Res ; 48(D1): D84-D86, 2020 01 08.
Article in English | MEDLINE | ID: mdl-31665464

ABSTRACT

GenBank® (www.ncbi.nlm.nih.gov/genbank/) is a comprehensive, public database that contains over 6.25 trillion base pairs from over 1.6 billion nucleotide sequences for 450 000 formally described species. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. Recent updates include a new version of Genome Workbench that supports GenBank submissions, new submission wizards for viral genomes, enhancements to BankIt and improved handling of taxonomy for sequences from pathogens.


Subject(s)
Computational Biology/methods , Databases, Nucleic Acid , Genomics/methods , Software , Molecular Sequence Annotation , National Institutes of Health (U.S.) , United States , Web Browser
20.
Nucleic Acids Res ; 47(D1): D94-D99, 2019 01 08.
Article in English | MEDLINE | ID: mdl-30365038

ABSTRACT

GenBank® (www.ncbi.nlm.nih.gov/genbank/) is a comprehensive database that contains publicly available nucleotide sequences for 420 000 formally described species. Most GenBank submissions are made using BankIt, the NCBI Submission Portal, or the tool tbl2asn, and are obtained from individual laboratories and batch submissions from large-scale sequencing projects, including whole genome shotgun (WGS) and environmental sampling projects. Daily data exchange with the European Nucleotide Archive (ENA) and the DNA Data Bank of Japan (DDBJ) ensures worldwide coverage. GenBank is accessible through the NCBI Nucleotide database, which links to related information such as taxonomy, genomes, protein sequences and structures, and biomedical journal literature in PubMed. BLAST provides sequence similarity searches of GenBank and other sequence databases. Complete bimonthly releases and daily updates of the GenBank database are available by FTP. Recent updates include an expansion of sequence identifier formats to accommodate expected database growth, submission wizards for ribosomal RNA, and the transfer of Expressed Sequence Tag (EST) and Genome Survey Sequence (GSS) data into the Nucleotide database.


Subject(s)
Databases, Nucleic Acid , Web Browser , Computational Biology/methods , Databases, Nucleic Acid/trends , Genomics/methods , Humans , Information Storage and Retrieval , Software Design
SELECTION OF CITATIONS
SEARCH DETAIL
...