Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Proc Natl Acad Sci U S A ; 116(14): 6995-7004, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30894483

ABSTRACT

Aging is associated with impaired tissue regeneration. Stem cell number and function have been identified as potential culprits. We first demonstrate a direct correlation between stem cell number and time to bone fracture union in a human patient cohort. We then devised an animal model recapitulating this age-associated decline in bone healing and identified increased cellular senescence caused by a systemic and local proinflammatory environment as the major contributor to the decline in skeletal stem/progenitor cell (SSPC) number and function. Decoupling age-associated systemic inflammation from chronological aging by using transgenic Nfkb1KO mice, we determined that the elevated inflammatory environment, and not chronological age, was responsible for the decrease in SSPC number and function. By using a pharmacological approach inhibiting NF-κB activation, we demonstrate a functional rejuvenation of aged SSPCs with decreased senescence, increased SSPC number, and increased osteogenic function. Unbiased, whole-genome RNA sequencing confirmed the reversal of the aging phenotype. Finally, in an ectopic model of bone healing, we demonstrate a functional restoration of regenerative potential in aged SSPCs. These data identify aging-associated inflammation as the cause of SSPC dysfunction and provide mechanistic insights into its reversal.


Subject(s)
Aging/metabolism , Fracture Healing , Fractures, Bone/metabolism , Osteogenesis , Stem Cells/metabolism , Aging/genetics , Aging/pathology , Animals , Female , Fractures, Bone/pathology , Humans , Inflammation/genetics , Inflammation/metabolism , Inflammation/pathology , Male , Mice , Mice, Knockout , NF-kappa B p50 Subunit/genetics , NF-kappa B p50 Subunit/metabolism , Stem Cells/pathology
2.
Tissue Cell ; 49(5): 545-551, 2017 Oct.
Article in English | MEDLINE | ID: mdl-28720305

ABSTRACT

Ecto-5'-nucleotidase (CD73) generates adenosine, an osteoblast activator and key regulator of skeletal growth. It is unknown, however, if CD73 regulates osteogenic differentiation during fracture healing in adulthood, and in particular how CD73 activity regulates intramembranous bone repair in the elderly. Monocortical tibial defects were created in 46-52-week-old wild type (WT) and CD73 knock-out mice (CD73-/-) mice. Injury repair was analyzed at post-operative days 5, 7, 14 and 21 by micro-computed tomography (micro-CT), histomorphometry, proliferating cell nuclear antigen (PCNA) immunostaining, alkaline phosphatase (ALP) and tartrate-resistant acid phosphatase (TRAP) histochemistry. Middle-aged CD73 knock-out mice exhibited delayed bone regeneration and significantly reduced bone matrix deposition detected by histomorphometry and micro-CT. Cell proliferation, ALP activity and osteoclast number were reduced in the CD73-/- mice, suggesting a combined defect in bone formation and resorption due the absence of CD73 activity in this model of intramembranous bone repair. Results from this study demonstrate that osteoblast activation through CD73 activity is essential during bone repair in aging mice, and it may present a drugable target for future biomimetic therapeutic approaches that aim at enhancing bone formation in the elderly patients.


Subject(s)
5'-Nucleotidase/metabolism , Aging/metabolism , Bone Remodeling/physiology , Fracture Healing/physiology , Osteogenesis/physiology , Aging/pathology , Animals , Male , Mice , Mice, Inbred C57BL , Mice, Knockout
SELECTION OF CITATIONS
SEARCH DETAIL
...