Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Bioeng Transl Med ; 6(2): e10213, 2021 May.
Article in English | MEDLINE | ID: mdl-33786376

ABSTRACT

Ionizable lipid nanoparticles (LNPs) are the most clinically advanced nano-delivery system for therapeutic nucleic acids. The great effort put in the development of ionizable lipids with increased in vivo potency brought LNPs from the laboratory benches to the FDA approval of patisiran in 2018 and the ongoing clinical trials for mRNA-based vaccines against SARS-CoV-2. Despite these success stories, several challenges remain in RNA delivery, including what is known as "endosomal escape." Reaching the cytosol is mandatory for unleashing the therapeutic activity of RNA molecules, as their accumulation in other intracellular compartments would simply result in efficacy loss. In LNPs, the ability of ionizable lipids to form destabilizing non-bilayer structures at acidic pH is recognized as the key for endosomal escape and RNA cytosolic delivery. This is motivating a surge in studies aiming at designing novel ionizable lipids with improved biodegradation and safety profiles. In this work, we describe the journey of RNA-loaded LNPs across multiple intracellular barriers, from the extracellular space to the cytosol. In silico molecular dynamics modeling, in vitro high-resolution microscopy analyses, and in vivo imaging data are systematically reviewed to distill out the regulating mechanisms underlying the endosomal escape of RNA. Finally, a comparison with strategies employed by enveloped viruses to deliver their genetic material into cells is also presented. The combination of a multidisciplinary analytical toolkit for endosomal escape quantification and a nature-inspired design could foster the development of future LNPs with improved cytosolic delivery of nucleic acids.

2.
Biomed Microdevices ; 21(2): 41, 2019 04 06.
Article in English | MEDLINE | ID: mdl-30955101

ABSTRACT

Although a plethora of nanoparticle configurations have been proposed over the past 10 years, the uniform and deep penetration of systemically injected nanomedicines into the diseased tissue stays as a major biological barrier. Here, a 'Tissue Chamber' chip is designed and fabricated to study the extravascular transport of small molecules and nanoparticles. The chamber comprises a collagen slab, deposited within a PDMS mold, and an 800 µm channel for the injection of the working solution. Through fluorescent microscopy, the dynamics of molecules and nanoparticles was estimated within the gel, under different operating conditions. Diffusion coefficients were derived from the analysis of the particle mean square displacements (MSD). For validating the experimental apparatus and the protocol for data analysis, the diffusion D of FITC-Dextran molecules of 4, 40 and 250 kDa was first quantified. As expected, D reduces with the molecular weight of the dextran molecules. The MSD-derived diffusion coefficients were in good agreement with values derived via fluorescence recovery after photobleaching (FRAP), an alternative technique that solely applies to small molecules. Then, the transport of six nanoparticles with similar hydrodynamic diameters (~ 200 nm) and different surface chemistries was quantified. Surface PEGylation was confirmed to favor the diffusion of nanoparticles within the collagen slab, whereas the surface decoration with hyaluronic acid (HA) chains reduced nanoparticle mobility in a way proportional to the HA molecular weight. To assess further the generality of the proposed approach, the diffusion of the six nanoparticles was also tested in freshly excised brain tissue slices. In these ex vivo experiments, the diffusion coefficients were 5-orders of magnitude smaller than for the Tissue Chamber chip. This was mostly ascribed to the lack of a cellular component in the chip. However, the trends documented for PEGylated and HA-coated nanoparticles in vitro were also confirmed ex vivo. This work demonstrates that the Tissue Chamber chip can be employed to effectively and efficiently test the extravascular transport of nanomedicines while minimizing the use of animals.


Subject(s)
Lab-On-A-Chip Devices , Nanoparticles , Animals , Brain/metabolism , Cattle , Diffusion
3.
J Drug Target ; 27(5-6): 542-554, 2019.
Article in English | MEDLINE | ID: mdl-30296187

ABSTRACT

One of the major challenges in drug development is the delivery of therapeutics to the central nervous system (CNS). The blood-brain barrier (BBB), which modulates the passage of molecules from the CNS, presents a formidable obstacle that limits brain uptake of therapeutics and, therefore, impedes the treatment of multiple neurological pathologies. Targeted nanocarriers present an excellent opportunity for drug delivery into the brain leveraging on endogenous receptors to transport therapeutics across the BBB endothelium. Receptor-mediated transport endows multiple benefits over other conventional delivery methods such as the transient permeabilization of the BBB or the direct depositioning of intracranial depots. Herein, different strategies for nanocarrier targeting to the CNS are discussed, highlighting the challenges and recent developments.


Subject(s)
Blood-Brain Barrier/metabolism , Central Nervous System Diseases/drug therapy , Drug Carriers/chemistry , Nanomedicine/methods , Nanoparticles/chemistry , Animals , Biological Transport , Central Nervous System Diseases/metabolism , Drug Delivery Systems , Drug Development , Humans
4.
Mol Ther ; 25(7): 1491-1500, 2017 07 05.
Article in English | MEDLINE | ID: mdl-28392163

ABSTRACT

RNAi-based therapy holds great promise, as it can be utilized for the treatment of multiple conditions in an accurate manner via sequence-specific manipulation of gene expression. To date, RNAi therapeutics have advanced into clinical trials for liver diseases and solid tumors; however, delivery of RNAi to leukocytes in general and to lymphocytes in particular remains a challenge. Lymphocytes are notoriously hard to transduce with RNAi payloads and are disseminated throughout the body, often located in deep tissues; therefore, developing an efficient systemic delivery system directed to lymphocytes is not a trivial task. Successful manipulation of lymphocyte function with RNAi possesses immense therapeutic potential, as it will enable researchers to resolve lymphocyte-implicated diseases such as inflammation, autoimmunity, transplant rejection, viral infections, and blood cancers. This potential has propelled the development of novel targeted delivery systems relying on the accumulating research knowledge from multiple disciplines, including materials science and engineering, immunology, and genetics. Here, we will discuss the recent progress in non-viral delivery strategies of RNAi payloads to lymphocytes. Special emphasis will be made on the challenges and potential opportunities in manipulating lymphocyte function with RNAi. These approaches might ultimately become a novel therapeutic modality to treat leukocyte-related diseases.


Subject(s)
Drug Delivery Systems/methods , Lymphocytes/drug effects , Molecular Targeted Therapy/methods , RNA Interference , RNA, Small Interfering/administration & dosage , Animals , Aptamers, Nucleotide/administration & dosage , Aptamers, Nucleotide/chemistry , Autoimmune Diseases/genetics , Autoimmune Diseases/immunology , Autoimmune Diseases/pathology , Autoimmune Diseases/therapy , Clinical Trials as Topic , Dendrimers/administration & dosage , Dendrimers/chemical synthesis , Graft Rejection/genetics , Graft Rejection/immunology , Graft Rejection/pathology , Graft Rejection/therapy , Hematologic Neoplasms/genetics , Hematologic Neoplasms/immunology , Hematologic Neoplasms/pathology , Hematologic Neoplasms/therapy , Humans , Immunoconjugates/administration & dosage , Immunoconjugates/chemistry , Lymphocytes/immunology , Lymphocytes/pathology , Nanoparticles/administration & dosage , Nanoparticles/chemistry , RNA, Small Interfering/genetics , Virus Diseases/genetics , Virus Diseases/immunology , Virus Diseases/pathology , Virus Diseases/therapy
5.
Front Immunol ; 8: 69, 2017.
Article in English | MEDLINE | ID: mdl-28220118

ABSTRACT

Immunotherapy has a great potential in advancing cancer treatment, especially in light of recent discoveries and therapeutic interventions that lead to complete response in specific subgroups of melanoma patients. By using the body's own immune system, it is possible not only to specifically target and eliminate cancer cells while leaving healthy cells unharmed but also to elicit long-term protective response. Despite the promise, current immunotherapy is limited and fails in addressing all tumor types. This is probably due to the fact that a single treatment strategy is not sufficient in overcoming the complex antitumor immunity. The use of nanoparticle-based system for immunotherapy is a promising strategy that can simultaneously target multiple pathways with the same kinetics to enhance antitumor response. Here, we will highlight the recent advances in the field of cancer immunotherapy that utilize lipid-based nanoparticles as delivery vehicles and address the ongoing challenges and potential opportunities.

6.
J Control Release ; 244(Pt B): 149-156, 2016 12 28.
Article in English | MEDLINE | ID: mdl-27491881

ABSTRACT

Hematological malignancies are a group of diseases characterized by clonal proliferation of blood-forming cells. Malignant blood cells are classified as myeloid or lymphoid cells depending on their stem cell origin. Lymphoid malignancies are characterized by lymphocyte accumulation in the blood stream, in the bone marrow, or in lymphatic nodes and organs. Several of these diseases are associated with chromosomal translocations, which cause gene fusion and amplification of expression, while others are characterized with aberrant expression of oncogenes. Overall, these genes play a major role in development and maintenance of malignant clones. The discovery of antisense oligonucleotides and RNA interference (RNAi) mechanisms offer new tools to specifically manipulate gene expression. Systemic delivery of inhibitory oligonucleotides molecules for manipulation of gene expression in lymphocytes holds a great potential for facilitating the development of an oligonucleotides -based therapy platform for lymphoid blood cancer. However, lymphocytes are among the most difficult targets for oligonucleotides delivery, as they are resistant to conventional transfection reagents and are dispersed throughout the body, making it difficult to successfully localize or deliver oligonucleotides payloads via systemic administration. In this review, we will survey the latest progress in the field of oligonucleotides based nanomedicine in the heterogeneous group of hematological malignancies with special emphasis on RNA based strategies. We will describe the most advanced non-viral nanocarriers for RNA delivery to malignant blood cells. We will also discuss targeted strategies for cell specific delivery of RNA molecules using nanoparticles and the therapeutic benefit of manipulating gene function in hematological malignancies. Finally, we will focus on the ex vivo, in vivo, and clinical trial strategies, that are currently under development in hematological malignancies - strategies that might increase the arsenal of drugs available to hematologists in the upcoming years.


Subject(s)
Drug Delivery Systems , Hematologic Neoplasms/drug therapy , Immunomodulation/drug effects , Nanoparticles/administration & dosage , Oligonucleotides/administration & dosage , Animals , Hematologic Neoplasms/immunology , Humans , Leukocytes/immunology , Nanoparticles/therapeutic use , Oligonucleotides/therapeutic use
7.
Nanoscale ; 6(7): 3742-52, 2014 Apr 07.
Article in English | MEDLINE | ID: mdl-24569711

ABSTRACT

Hyaluronan (HA), a naturally occurring high Mw (HMw) glycosaminoglycan, has been shown to play crucial roles in cell growth, embryonic development, healing processes, inflammation, and tumor development and progression. Low Mw (LMw, <10 kDa) HA has been reported to provoke inflammatory responses, such as induction of cytokines, chemokines, reactive nitrogen species and growth factors. Herein, we prepared and characterized two types of HA coated (LMw and HMw) lipid-based targeted and stabilized nanoparticles (tsNPs) and tested their binding to tumor cells expressing the HA receptor (CD44), systemic immunotoxicity, and biodistribution in tumor bearing mice. In vitro, the Mw of the surface anchored HA had a significant influence on the affinity towards CD44 on B16F10 murine melanoma cells. LMw HA-tsNPs exhibited weak binding, while binding of tsNPs coated with HMw HA was characterized by high binding. Both types of tsNPs had no measured effect on cytokine induction in vivo following intravenous administration to healthy C57BL/6 mice suggesting no immune activation. HMw HA-tsNPs showed enhanced circulation time and tumor targeting specificity, mainly by accumulating in the tumor and its vicinity compared with LMw HA-tsNPs. Finally, we show that methotrexate (MTX), a drug commonly used in cancer chemotherapy, entrapped in HMw HA-tsNPs slowly diffused from the particles with a half-life of 13.75 days, and improved the therapeutic outcome in a murine B16F10 melanoma model compared with NPs suggesting an active cellular targeting beyond the Enhanced Permeability and Retention (EPR) effect. Taken together, these findings have major implications for the use of high molecular weight HA in nanomedicine as a selective and safe active cellular targeting moiety.


Subject(s)
Hyaluronic Acid/chemistry , Lipids/chemistry , Nanoparticles/chemistry , Animals , Antimetabolites, Antineoplastic/administration & dosage , Antimetabolites, Antineoplastic/chemistry , Carbocyanines/chemistry , Cell Line, Tumor , Cytokines/metabolism , Drug Carriers/chemistry , Drug Carriers/pharmacokinetics , Female , Half-Life , Hyaluronan Receptors/chemistry , Hyaluronan Receptors/metabolism , Methotrexate/administration & dosage , Methotrexate/chemistry , Mice , Mice, Inbred C57BL , Molecular Weight , Nanomedicine , Nanoparticles/metabolism , Protein Binding , Skin Neoplasms/drug therapy , Skin Neoplasms/metabolism , Skin Neoplasms/pathology , Tissue Distribution
8.
Chem Soc Rev ; 41(7): 2623-40, 2012 Apr 07.
Article in English | MEDLINE | ID: mdl-22085917

ABSTRACT

The use of polysaccharides as building blocks in the development of nano-sized drug delivery systems is rapidly growing. This can be attributed to the outstanding virtues of polysaccharides such as biocompatibility, biodegradability, low toxicity and low cost. In addition, the variety of physicochemical properties and the ease of chemical modifications enable the preparation of a wide array of nanoparticles. This tutorial review describes the properties of common polysaccharides, the main mechanisms for polysaccharide based-nanoparticles preparation, and provides examples from the conceptual design towards pre-clinical and clinical applications.


Subject(s)
Computer Simulation , Drug Delivery Systems , Nanoparticles/chemistry , Neoplasms/drug therapy , Polysaccharides/chemistry , Carbohydrate Sequence , Humans , Molecular Sequence Data
9.
Nanomedicine (Lond) ; 6(10): 1771-85, 2011 Dec.
Article in English | MEDLINE | ID: mdl-22122585

ABSTRACT

RNAi is a ubiquitous and highly specific, endogenous, evolutionarily conserved mechanism of gene silencing. RNAi holds great promise as a novel therapeutic modality. Despite the rapid progress in the understanding and utilization of RNAi in vitro, the application of RNAi in vivo has been met with great difficulties, mainly in the delivery of these molecules into specific cell types. Here, we describe the major systemic nanomedicine platforms that have been developed. Focus is given to the development of new strategies to target subsets of leukocytes, which are among the most difficult cells to transduce with RNAi. Finally, we discuss the hurdles and potential opportunities for in vivo manipulation of the immune response utilizing RNAi nanomedicines.


Subject(s)
Immunity, Cellular/genetics , Immunity, Cellular/immunology , Leukocytes/immunology , Nanomedicine/instrumentation , RNA Interference/physiology , RNA, Small Interfering/administration & dosage , Gene Silencing/physiology , Humans , Liposomes/chemistry , Nanomedicine/methods , RNA, Small Interfering/chemistry
10.
J Control Release ; 156(2): 231-8, 2011 Dec 10.
Article in English | MEDLINE | ID: mdl-21745506

ABSTRACT

Hyaluronan (HA), a naturally occurring glycosaminoglycan, exerts different biological functions depending on its molecular weight ranging from 4000-10M Da. While high Mw HA (HMw-HA) is considered as anti-inflammatory, low Mw HA (LMw-HA) has been reported to activate an innate immune response. In addition, opposing effects on cell proliferation mediated by the HA receptor CD44, have also been reported for high and low Mw HA. We have previously demonstrated that HMw-HA can be covalently attached to the surface of lipid nanoparticles (NPs), endowing the carriers with long circulation and active targeting towards HA-receptors (CD44 and CD168) highly expressed on tumors. Here we present a small library of HA-coated NPs distinguished only by the Mw of their surface anchored HA ranging from 6.4 kDa to 1500 kDa. All types of NPs exerted no effect on macrophages, T cells and ovarian cancer cells proliferation. In addition, no induction of cytokines or complement activation was observed. The affinity towards the CD44 receptor was found to be solely controlled by the Mw of the NPs surface-bound HA, from extremely low binding for LMw-HA to binding with high affinity for HMw-HA. These findings have major implications for the use of HA in nanomedicine as LMw-HA surface modified-NPs could be a viable option for the replacement of polyethylene glycol (PEG) when passive delivery is required, lacking adverse effects such as complement activation and cytokine induction, while HMw-HA-coated NPs could be used for active targeting to CD44 overexpressing tumors and aberrantly activated leukocytes in inflammation.


Subject(s)
Hyaluronan Receptors/immunology , Hyaluronic Acid/chemistry , Hyaluronic Acid/immunology , Nanoparticles/chemistry , Animals , Cell Line, Tumor , Cell Proliferation , Complement Activation , Humans , Immunity, Innate , Macrophages/cytology , Macrophages/immunology , Mice , Molecular Weight , T-Lymphocytes/cytology , T-Lymphocytes/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...