Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 14(42): 48123-48132, 2022 Oct 26.
Article in English | MEDLINE | ID: mdl-36168303

ABSTRACT

Highly deformable batteries that are flexible and stretchable are important for the next-generation wearable devices. Several studies have focused on the stable operation and life span of batteries. On the other hand, there has been less focus on the packaging of highly deformable batteries. In wearable devices, solid-state or pouch lithium-ion batteries (LIBs) packaged in aluminum (Al)-laminated films, which protect against moisture and gas permeation, are used. Stretchable elastomer materials are used as the packaging films of highly deformable batteries; however, they are extremely permeable to gas and moisture. Therefore, a packaging film that provides high deformability along with gas and moisture barrier functionalities is required for the stable operation of highly deformable batteries used in ambient conditions. In this study, a stretchable packaging film with high gas barrier functionality is developed successfully by coating a thin layer of liquid metal onto a gold (Au)-deposited thermoplastic polyurethane film using the layer-by-layer method. The film exhibits excellent oxygen gas impermeability under mechanical strain and extremely low moisture permeability. It shows high impermeability along with high mechanical robustness. Using the proposed stretchable gas barrier film, a highly deformable LIB is assembled, which offers reliable operation in air. The operation of the highly deformable battery is analyzed by powering LEDs under mechanical deformations in ambient conditions. The proposed stretchable packaging film can potentially be used for the development of packaging films in advanced wearable electronic devices.

2.
Sci Rep ; 10(1): 12666, 2020 07 29.
Article in English | MEDLINE | ID: mdl-32728079

ABSTRACT

Stretchable physical sensors are crucial for the development of advanced electrical systems, particularly wearable devices and soft robotics. Currently available stretchable sensors that detect both pressure and strain are based on piezoelectric, piezoresistive, or piezocapacitive effects. The range of pressure sensing is 1-800 kPa with large deformations being within the range of deformations of parts of the human body, such as elbows and knees. However, these devices cannot easily allow simultaneous and independent detection of pressure and strain with sensor arrays at large tensions (> 50%) because strain affects the pressure signal. In this study, we propose a monolithic silicone-based array of pressure and strain sensors that can simultaneously and independently detect the in-plane biaxial tensile deformation and pressure. To realize these functionalities, the deformation of the device structure was optimized using a hetero-silicone substrate made of two types of silicone with different hardness characteristics and porous silicone bodies. In addition, the resistances of the sensors were controlled by adjusting a mixture based on carbon nanoparticles to improve the sensitivity and independence between the pressure and strain sensors. These concepts demonstrate the potential of this approach and its compatibility with the current architectures of stretchable physical sensors.

3.
J Biosci Bioeng ; 113(6): 726-9, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22341575

ABSTRACT

Legionella pneumophila is the principal etiologic agent of Legionnaires' disease. We found that the growth of L. pneumophila was markedly inhibited by its own cell lysate and the inhibitory effect was abolished by heat-treatment of the lysate. The genomic library of L. pneumophila was constructed in Escherichia coli and screened to determine the gene involved in the growth inhibition. A clone harboring the gene encoding anthranilate synthase (TrpE), which is involved in tryptophan biosynthesis, exhibited an inhibitory effect on the growth of L. pneumophila. Anthranilic acid exogenously added also exhibited antibacterial activity against L. pneumophila. A series of single-gene-knockout mutants of L. pneumophila lacking tryptophan synthesis genes were constructed and assessed for their susceptibility to anthranilic acid. Although the growth of mutants deficient in anthranilate phosphoribosyltransferase (TrpD) and N-(5'-phosphoribosyl)anthranilate isomerase (TrpF) was not affected by exogenous anthranilic acid, the indole-3-glycerophosphate synthase (TrpC) deficient mutant exhibited an increased susceptibility compared with the parent strain. These observations strongly indicate that 1-(2-carboxyphenylamino)-1'-deoxyribulose-5'-phosphate (CPADR-5'-P), which is an intermediate of tryptophan synthesis from anthranilic acid, is responsible for the growth inhibition of L. pneumophila.


Subject(s)
Anti-Bacterial Agents/pharmacology , Growth Inhibitors/pharmacology , Legionella pneumophila/drug effects , ortho-Aminobenzoates/pharmacology , Anthranilate Synthase/genetics , Anthranilate Synthase/metabolism , Escherichia coli/genetics , Gene Library , Glycerophosphates/metabolism , Legionella pneumophila/genetics , Legionella pneumophila/growth & development , Legionella pneumophila/metabolism , Tryptophan/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...