Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Psychophysiology ; 61(5): e14506, 2024 May.
Article in English | MEDLINE | ID: mdl-38149745

ABSTRACT

The systolic and diastolic phases of the cardiac cycle are known to affect perception and cognition differently. Higher order processing tends to be facilitated at systole, whereas sensory processing of external stimuli tends to be impaired at systole compared to diastole. The current study aims to examine whether the cardiac cycle affects auditory deviance detection, as reflected in the mismatch negativity (MMN) of the event-related brain potential (ERP). We recorded the intensity deviance response to deviant tones (70 dB) presented among standard tones (60 or 80 dB, depending on blocks) and calculated the MMN by subtracting standard ERP waveforms from deviant ERP waveforms. We also assessed intensity-dependent N1 and P2 amplitude changes by subtracting ERPs elicited by soft standard tones (60 dB) from ERPs elicited by loud standard tones (80 dB). These subtraction methods were used to eliminate phase-locked cardiac-related electric artifacts that overlap auditory ERPs. The endogenous MMN was expected to be larger at systole, reflecting the facilitation of memory-based auditory deviance detection, whereas the exogenous N1 and P2 would be smaller at systole, reflecting impaired exteroceptive sensory processing. However, after the elimination of cardiac-related artifacts, there were no significant differences between systole and diastole in any ERP components. The intensity-dependent N1 and P2 amplitude changes were not obvious in either cardiac phase, probably because of the short interstimulus intervals. The lack of a cardiac phase effect on MMN amplitude suggests that preattentive auditory processing may not be affected by bodily signals from the heart.


Subject(s)
Electroencephalography , Evoked Potentials, Auditory , Humans , Evoked Potentials, Auditory/physiology , Acoustic Stimulation/methods , Auditory Perception/physiology , Evoked Potentials/physiology
2.
Psychophysiology ; 60(6): e14261, 2023 06.
Article in English | MEDLINE | ID: mdl-36715139

ABSTRACT

The number of studies investigating the relationship between respiratory phases and cognitive/neural processing of external events has been increasing, but the findings remain controversial. This registered report examined the effect of the respiratory phase on the discrimination accuracy of visual stimuli in the emotional and non-emotional domains. Forty-two healthy young participants were asked to choose fearful over neutral facial expressions and to choose high-contrast over low-contrast Gabor patches during spontaneous nasal respiration. Event-related potentials (ERPs) were also recorded for each type of stimulus presented during each respiratory phase. It was hypothesized that discrimination accuracy would be higher when the stimuli were presented during inhalation than during exhalation. It was also hypothesized that the amplitudes of ERPs elicited by the stimuli would be greater during inhalation than during exhalation. For comparison, the effect of the cardiac phase was examined, with the expectation that discrimination accuracy would be higher when the stimuli were presented during systole than during diastole. It was also hypothesized that the amplitudes of ERPs elicited by the stimuli would be greater during systole than during diastole. As expected, the results indicated that fear discrimination accuracy was higher during inhalation than exhalation and during systole than diastole. However, this was not the case for contrast discrimination. No differences in ERPs were observed between respiratory phases in either task. These results suggest that natural breathing in through the nose facilitates the discrimination of emotional stimuli, possibly via subcortical processes.


Subject(s)
Electroencephalography , Emotions , Humans , Electroencephalography/methods , Photic Stimulation/methods , Fear/psychology , Evoked Potentials , Facial Expression
3.
Int J Psychophysiol ; 173: 1-8, 2022 03.
Article in English | MEDLINE | ID: mdl-35017027

ABSTRACT

This study investigated the possible enhancement of visual discrimination accuracy by voluntarily adjusting the timing of stimulus presentation to a specific respiratory phase. Previous research has suggested that respiratory phases modulate perceptual and cognitive processing. For instance, a fearful face was identified faster when presented during nasal inhalation than during nasal exhalation, which could be related to changes in neural oscillatory activity synchronized with breathing in through one's nose. Based on such findings, the present study asked 40 young adults to perform an emotional discrimination task consisting of distinguishing fearful vs. neutral faces and a physical discrimination task consisting of distinguishing high- vs. low-contrast Gabor patches during nasal respiration. Participants presented themselves with the stimuli to be judged in a designated respiratory phase by pressing a button. It was hypothesized that fear discrimination accuracy would be higher during inhalation than exhalation if sensitivity to emotional stimuli increased during inhalation. Conversely, if overall visual sensitivity was enhanced during inhalation, the identical effect was expected for contrast discrimination. The results indicated that discrimination accuracy did not differ between inhalation and exhalation phases in either task. This result provided no evidence that the respiratory phase affected visual discrimination accuracy when people adjusted the timing of stimulus presentation to the onset of inhalation or exhalation.


Subject(s)
Discrimination, Psychological , Exhalation , Emotions , Exhalation/physiology , Fear/psychology , Humans , Inhalation/physiology , Visual Perception , Young Adult
4.
Int J Psychophysiol ; 162: 180, 2021 04.
Article in English | MEDLINE | ID: mdl-33275997

ABSTRACT

This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause. The full Elsevier Policy on Article Withdrawal can be found at https://www.elsevier.com/about/our-business/policies/article-withdrawal.

SELECTION OF CITATIONS
SEARCH DETAIL
...