Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
J Biosci Bioeng ; 130(6): 577-581, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32859525

ABSTRACT

Urethanase (EC 3.5.1.75) catalyzes the hydrolysis of ethyl carbamate (EC) to ethanol, carbon dioxide, and ammonia. From our recent study, we expected that an acetamidase encoded by amdS of Aspergillus oryzae may catalyze the degradation of EC because it is homologous with a Candida parapsilosis urethanase (CPUTNase) recently identified. Urethanase is a prospective candidate to reduce EC in alcoholic beverages, but knowledge of this enzyme is very limited. Recombinant AmdS was expressed to study its enzymatic properties. Purified AmdS was identified as a homo-tetramer consisting of four 60 kDa units and exhibited urethanase activity. In a 20% ethanol solution, AmdS had 65% activity compared with a solution without ethanol. Residual activity after 18 h indicated that AmdS was stable in 0%-40% ethanol solutions. The optimum temperature of AmdS was 40 °C. This enzyme showed urethanase activity at pH 6.4-9.6 and exhibited its highest activity at pH 9.6. The Km value of AmdS for EC was 8.2 mM, similar to the Km value (7.6 mM) of CPUTNase. AmdS showed activity not only for EC and acetamide but also other amide compounds. In this study, we investigated the enzymatic properties of AmdS that was identified as acetamidase and showed that an amidase can be an enzymatic candidate that degrades EC.


Subject(s)
Amidohydrolases/metabolism , Aspergillus oryzae/enzymology , Biocatalysis , Urethane/chemistry , Ethanol/chemistry , Hydrolysis
2.
J Biosci Bioeng ; 130(2): 115-120, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32253090

ABSTRACT

Urethanase (EC 3.5.1.75) is an effective enzyme for removing ethyl carbamate (EC) present in alcoholic beverages. However, urethanase is not well studied and has not yet been developed for practical use. In this study, we report a new urethanase (CPUTNase) from the yeast Candida parapsilosis. Because C. parapsilosis can assimilate EC as its sole nitrogen source, the enzyme was extracted from yeast cells and purified using ion-exchange chromatography. The CPUTNase was estimated as a homotetramer comprising four units of a 61.7 kDa protein. In a 20% ethanol solution, CPUTNase had 73% activity compared with a solution without ethanol. Residual activity after 18 h indicated that CPUTNase was stable in 0%-40% ethanol solutions. The optimum temperature of CPUTNase was 43°C. This enzyme showed urethanase activity at pH 5.5-10.0 and exhibited its highest activity at pH 10. The gene of CPUTNase was identified, and a recombinant enzyme was expressed in the yeast Saccharomyces cerevisiae. Characteristics of recombinant CPUTNase were identical to the native enzyme. The putative amino acid sequence indicated that CPUTNase was an amidase family protein. Further, substrate specificity supported this sequence analysis because CPUTNase showed higher activities toward amide compounds. These results suggest that amidase could be a candidate for urethanase. We discovered a new enzyme and investigated its enzymatic characteristics, sequence, and recombinant CPUTNase expression. These results contribute to a further understanding of urethanase.


Subject(s)
Amidohydrolases/isolation & purification , Amidohydrolases/metabolism , Candida parapsilosis/enzymology , Amidohydrolases/chemistry , Amidohydrolases/genetics , Amino Acid Sequence , Candida parapsilosis/genetics , Chromatography, Ion Exchange , Enzyme Stability/drug effects , Ethanol/pharmacology , Gene Expression , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Saccharomyces cerevisiae/genetics , Substrate Specificity , Urethane/metabolism
3.
J Biol Chem ; 290(5): 2902-18, 2015 Jan 30.
Article in English | MEDLINE | ID: mdl-25505251

ABSTRACT

Gut microbial metabolites of polyunsaturated fatty acids have attracted much attention because of their various physiological properties. Dysfunction of tight junction (TJ) in the intestine contributes to the pathogenesis of many disorders such as inflammatory bowel disease. We evaluated the effects of five novel gut microbial metabolites on tumor necrosis factor (TNF)-α-induced barrier impairment in Caco-2 cells and dextran sulfate sodium-induced colitis in mice. 10-Hydroxy-cis-12-octadecenoic acid (HYA), a gut microbial metabolite of linoleic acid, suppressed TNF-α and dextran sulfate sodium-induced changes in the expression of TJ-related molecules, occludin, zonula occludens-1, and myosin light chain kinase. HYA also suppressed the expression of TNF receptor 2 (TNFR2) mRNA and protein expression in Caco-2 cells and colonic tissue. In addition, HYA suppressed the protein expression of TNFR2 in murine intestinal epithelial cells. Furthermore, HYA significantly up-regulated G protein-coupled receptor (GPR) 40 expression in Caco-2 cells. It also induced [Ca(2+)]i responses in HEK293 cells expressing human GPR40 with higher sensitivity than linoleic acid, its metabolic precursor. The barrier-recovering effects of HYA were abrogated by a GPR40 antagonist and MEK inhibitor in Caco-2 cells. Conversely, 10-hydroxyoctadacanoic acid, which is a gut microbial metabolite of oleic acid and lacks a carbon-carbon double bond at Δ12 position, did not show these TJ-restoring activities and down-regulated GPR40 expression. Therefore, HYA modulates TNFR2 expression, at least partially, via the GPR40-MEK-ERK pathway and may be useful in the treatment of TJ-related disorders such as inflammatory bowel disease.


Subject(s)
Epithelial Cells/metabolism , Intestines/cytology , Linoleic Acid/metabolism , Oleic Acids/metabolism , Animals , Caco-2 Cells , Colitis/metabolism , Epithelial Cells/cytology , Female , Flow Cytometry , Humans , Immunohistochemistry , MAP Kinase Signaling System/physiology , Mice , Mice, Inbred BALB C , Receptors, G-Protein-Coupled/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL