Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 83
Filter
Add more filters










Publication year range
1.
J Physiol Sci ; 74(1): 4, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267849

ABSTRACT

We reviewed fundamental studies on muscular pain, encompassing the characteristics of primary afferent fibers and neurons, spinal and thalamic projections, several muscular pain models, and possible neurochemical mechanisms of muscle pain. Most parts of this review were based on data obtained from animal experiments, and some researches on humans were also introduced. We focused on delayed-onset muscle soreness (DOMS) induced by lengthening contractions (LC), suitable for studying myofascial pain syndromes. The muscular mechanical withdrawal threshold (MMWT) decreased 1-3 days after LC in rats. Changing the speed and range of stretching showed that muscle injury seldom occurred, except in extreme conditions, and that DOMS occurred in parameters without muscle damage. The B2 bradykinin receptor-nerve growth factor (NGF) route and COX-2-glial cell line-derived neurotrophic factor (GDNF) route were involved in the development of DOMS. The interactions between these routes occurred at two levels. A repeated-bout effect was observed in MMWT and NGF upregulation, and this study showed that adaptation possibly occurred before B2 bradykinin receptor activation. We have also briefly discussed the prevention and treatment of DOMS.


Subject(s)
Myalgia , Nerve Growth Factor , Humans , Animals , Rats , Neurons , Up-Regulation , Receptors, Bradykinin
2.
Neurosci Res ; 198: 30-38, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37392833

ABSTRACT

Repeated cold stress (RCS) can trigger the development of fibromyalgia (FM)-like symptoms, including persistent deep-tissue pain, although nociceptive changes to the skin have not been fully characterized. Using a rat RCS model, we investigated nociceptive behaviors induced by noxious mechanical, thermal, and chemical stimuli applied to plantar skin. Neuronal activation in the spinal dorsal horn was examined using the formalin pain test. In rats exposed to RCS, nociceptive behavioral hypersensitivity was observed in all modalities of cutaneous noxious stimuli: the mechanical withdrawal threshold was decreased, and the heat withdrawal latency was shortened one day after the cessation of stress. The duration of nocifensive behaviors in the formalin test was prolonged in phase II but not in phase I. The number of c-Fos-positive neurons increased in the entire dorsal horn laminae I-VI, ipsilateral, but not contralateral, to formalin injection at the L3-L5 segments. The duration of nocifensive behavior in phase II was significantly and positively correlated with the number of c-Fos-positive neurons in laminae I-II. These results demonstrate that cutaneous nociception is facilitated in rats exposed to RCS for a short time and that the spinal dorsal horn neurons are hyperactivated by cutaneous formalin in the RCS model.


Subject(s)
Cold-Shock Response , Nociception , Rats , Animals , Rats, Sprague-Dawley , Pain Measurement/methods , Pain/metabolism , Spinal Cord/metabolism , Spinal Cord Dorsal Horn/metabolism , Proto-Oncogene Proteins c-fos/metabolism , Formaldehyde
3.
Scand J Med Sci Sports ; 34(1): e14497, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37724768

ABSTRACT

Delayed onset muscle soreness (DOMS) develops after performing unaccustomed eccentric exercises. Animal studies have shown that DOMS is mechanical hyperalgesia through nociceptor sensitization induced by nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) upregulated by cyclooxygenase-2 (COX-2). However, no previous study has investigated these in relation to DOMS in humans. This study compared the first and second bouts of one-leg eccentric cycling (ECC) for changes in NGF, GDNF, and COX-2 mRNA in the vastus lateralis (VL). Seven healthy adults (18-40 years) performed two bouts of ECC (10 sets of 50 contractions) with 80% maximal voluntary concentric peak torque separated by 2 weeks (ECC1, ECC2). Muscle soreness that was assessed by a visual analog scale and maximal voluntary isometric contraction (MVC) torque of the knee extensors were measured before, immediately after (MVC only), 24 and 48 h post-exercise. Muscle biopsy was taken from the VL before the first bout from nonexercised leg (control) and 24 h after each bout from the exercised leg, and analyzed for NGF, GDNF, and COX-2 mRNA. Peak DOMS was more than two times greater and MVC torque at 48 h post-exercise was approximately 20% smaller after ECC1 than ECC2 (p < 0.05), suggesting the repeated bout effect. NGF mRNA level was higher (p < 0.05) post-ECC1 (0.79 ± 0.68 arbitrary unit) than control (0.06 ± 0.07) and post-ECC2 (0.08 ± 0.10). GDNF and COX-2 mRNA did not show significant differences between control, post-ECC1, and post-ECC2. These results suggest that an increase in NGF is associated with the development of DOMS in humans.


Subject(s)
Muscle, Skeletal , Quadriceps Muscle , Adult , Humans , Quadriceps Muscle/physiology , Muscle, Skeletal/physiology , Myalgia , Glial Cell Line-Derived Neurotrophic Factor/genetics , Glial Cell Line-Derived Neurotrophic Factor/metabolism , Leg , Cyclooxygenase 2/genetics , Cyclooxygenase 2/metabolism , Nerve Growth Factor/metabolism , Isometric Contraction/physiology , RNA, Messenger/metabolism , Muscle Contraction/physiology
4.
Sci Rep ; 13(1): 13585, 2023 08 21.
Article in English | MEDLINE | ID: mdl-37604935

ABSTRACT

Although widespread pain, such as fibromyalgia, is considered to have a central cause, peripheral input is important. We used a rat repeated cold stress (RCS) model with many characteristics common to fibromyalgia and studied the possible involvement of decreased muscle pH in muscle mechanical hyperalgesia. After a 5-day RCS, the muscle pH and the muscular mechanical withdrawal threshold (MMWT) decreased significantly. Subcutaneously injected specific inhibitor of vacuolar ATPase (V-ATPase), bafilomycin A1, reversed both changes almost completely. It also reversed the increased mechanical response of muscle thin-fibre afferents after RCS. These results show that V-ATPase activation caused muscle pH drop, which led to mechanical hypersensitivity after RCS. Since extracellular matrix proteoglycan and acid sensitive ion channels (TRPV1 and ASIC3) have been considered as possible mechanisms for sensitizing/activating nociceptors by protons, we investigated their involvement. Manipulating the extracellular matrix proteoglycan with chondroitin sulfate and chondroitinase ABC reversed the MMWT decrease after RCS, supporting the involvement of the extracellular mechanism. Inhibiting ASIC3, but not TRPV1, reversed the decreased MMWT after RCS, and ASIC3 mRNA and protein in the dorsal root ganglia were upregulated, indicating ASIC3 involvement. These findings suggest that extracellular mechanism and ASIC3 play essential roles in proton-induced mechanical hyperalgesia after RCS.


Subject(s)
Fibromyalgia , Hypersensitivity , Vacuolar Proton-Translocating ATPases , Animals , Rats , Proteoglycans , Hyperalgesia , Nociception , Extracellular Matrix , Muscle Fibers, Skeletal , Protons , Hydrogen-Ion Concentration
5.
Headache ; 62(10): 1365-1375, 2022 11.
Article in English | MEDLINE | ID: mdl-36321946

ABSTRACT

OBJECTIVE: To establish a new rat model of craniofacial myalgia, and to clarify which central nervous system pathways are activated in the model. BACKGROUND: Craniofacial myalgia, represented by myogenous temporomandibular disorder and tension-type headache with pericranial tenderness, is more common in female patients. The pain is thought to be a type of multifactorial disorder with several coexisting causes. To our knowledge, there are no models of craniofacial muscle hyperalgesia caused by multiple types of stimuli. METHODS: We injected nerve growth factor into the trapezius muscle of female and male rats and repeatedly stimulated the masseter muscle (MM) electrically for 10 days. We determined the mechanical head-withdrawal threshold of MM and extent of phosphorylated extracellular signal-related kinase 1/2 (pERK) immunoreactivity in various regions of the lower brainstem. We conducted retrograde tract-tracing to determine the projection of mechanosensitive MM-innervating secondary neurons to the lateral parabrachial nucleus. Finally, we administered morphine in rats to determine whether increases of pERK immunoreactivity were dependent on noxious inputs. RESULTS: In female rats, but not male rats, the mechanical head-withdrawal threshold was decreased significantly from days 9 to 12. The number of pERK-immunoreactive neurons in the brainstem was increased significantly in female rats in the group with both stimuli compared to rats in other groups with a single stimulus. Mechanosensitive MM-innervating neurons in the brainstem projected to the parabrachial nucleus. Morphine administration blocked the increase in the number of pERK-immunoreactive neurons in both the brainstem and parabrachial nucleus. CONCLUSIONS: We established a model of craniofacial myalgia by combining trapezius and MM stimuli in female rats. We found mechanical hyperalgesia of the MM and activation of the pain pathway from the brainstem to parabrachial nucleus. The model reflects the characteristics of patients with craniofacial myalgia and might be helpful to clarify the pathogenic mechanisms underlying these disorders.


Subject(s)
Masseter Muscle , Parabrachial Nucleus , Rats , Female , Animals , Parabrachial Nucleus/metabolism , Rats, Sprague-Dawley , Hyperalgesia/etiology , Hyperalgesia/pathology , Muscle Contraction , Extracellular Signal-Regulated MAP Kinases/metabolism , Myalgia
6.
Sci Rep ; 12(1): 15825, 2022 09 22.
Article in English | MEDLINE | ID: mdl-36138196

ABSTRACT

This study aimed to characterise topographic distribution of pressure pain thresholds (PPTs) of thoracolumbar paraspinal muscles and its change after lengthening contractions (LCs) of the back muscles. Using young male asymptomatic participants in Experiment 1, we systematically examined the distribution of PPTs bilaterally in the range of Th1-L5 at measurement points 2 and 4 cm from the midline. PPTs were found to be higher in the lumbar segments of the paraspinal muscles than in the thoracic segments, and in muscles closer to the vertebrae (2 vs. 4 cm from the midline). The PPTs did not differ between the left and right sides in each segment. In Experiment 2, LC was applied by asking a part of participants recruited in Experiment 1 to fall their trunk from a starting position (parallel to the floor) to 40° flexed position, and then made it back as quickly as possible to the starting position. This cycle was repeated until participants could not keep contractions (30 times/set, 25.4 ± 10.6 sets). PPTs of the LC group decreased prominently in the lower thoracic and lumbar segments, and the decrease was more evident 24 h after LC compared to that 48 h after. In contrast, PPTs in the control group without LC remained unchanged. These results provided broad topographic images of PPTs in the thoracolumbar paraspinal muscles of young male participants with and without LC, and the obtained PPT maps could be a useful guide for better treatment of exercise-induced myofascial pain in the lower back.


Subject(s)
Myofascial Pain Syndromes , Pain Threshold , Humans , Male , Pain Measurement/methods , Pain Threshold/physiology , Paraspinal Muscles , Volunteers
7.
Neurosci Res ; 181: 87-94, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35304863

ABSTRACT

The pathological mechanisms of fibromyalgia (FM) are largely unknown. Recently, a rat reserpine-induced pain model showing exaggerated pain-related behaviors to mechanical and thermal stimuli has been used in FM research. However, the model has not been fully characterized. Here, we investigated nociceptive hypersensitivity to chemical stimuli and its spinal mechanisms to further characterize the model. The rat model was induced by administering reserpine to the nervous system. Nociceptive behaviors to chemical stimuli were quantified using the formalin pain test, and neuronal activation of the stimuli was examined using spinal c-Fos immunohistochemistry and electrophysiological recordings of superficial dorsal horn (SDH) neurons. The duration of pain-related behaviors was prolonged in both phases I (0-5 min) and II (10-60 min) and the interphase; and the number of c-Fos-immunoreactive nuclei increased in laminae I-II, III-IV, and V-VI at the spinal segments L3-L5 on the side ipsilateral to the formalin injection, and these factors were significantly and positively correlated. The action potentials of SDH neurons induced by formalin injection were markedly increased in rats treated with reserpine. These results demonstrate that pain-related behaviors are facilitated by noxious chemical stimuli in a rat reserpine-induced FM model, and that the behavioral hypersensitivity is associated with hyperactivation of SDH neurons.


Subject(s)
Fibromyalgia , Reserpine , Animals , Fibromyalgia/chemically induced , Formaldehyde/adverse effects , Nociception , Pain/chemically induced , Proto-Oncogene Proteins c-fos , Rats , Rats, Sprague-Dawley , Reserpine/adverse effects , Reserpine/analysis , Spinal Cord
8.
J Physiol ; 600(3): 531-545, 2022 02.
Article in English | MEDLINE | ID: mdl-34967443

ABSTRACT

Systemic insulin administration evokes sympathoexcitatory actions, but the mechanisms underlying these observations are unknown. We reported that insulin sensitizes the response of thin-fibre primary afferents, as well as the dorsal root ganglion (DRG) that subserves them, to mechanical stimuli. However, little is known about the effects of insulin on primary neuronal responses to chemical stimuli. TRPV1, whose agonist is capsaicin (CAP), is widely expressed on chemically sensitive metaboreceptors and/or nociceptors. The aim of this investigation was to determine the effects of insulin on CAP-activated currents in small DRG neurons and CAP-induced action potentials in thin-fibre muscle afferents of normal healthy rodents. Additionally, we investigated whether insulin potentiates sympathetic nerve activity (SNA) responses to CAP. In whole-cell patch-clamp recordings from cultured mice DRG neurons in vitro, the fold change in CAP-activated current from pre- to post-application of insulin (n = 13) was significantly (P < 0.05) higher than with a vehicle control (n = 14). Similar results were observed in single-fibre recording experiments ex vivo as insulin potentiated CAP-induced action potentials compared to vehicle controls (n = 9 per group, P < 0.05). Furthermore, insulin receptor blockade with GSK1838705 significantly suppressed the insulin-induced augmentation in CAP-activated currents (n = 13) as well as the response magnitude of CAP-induced action potentials (n = 9). Likewise, the renal SNA response to CAP after intramuscular injection of insulin (n = 8) was significantly (P < 0.05) greater compared to vehicle (n = 9). The findings suggest that insulin potentiates TRPV1 responsiveness to CAP at the DRG and muscle tissue levels, possibly contributing to the augmentation in sympathoexcitation during activities such as physical exercise. KEY POINTS: Evidence suggests insulin centrally activates the sympathetic nervous system, and a chemical stimulus to tissues activates the sympathetic nervous system via thin fibre muscle afferents. Insulin is reported to modulate putative chemical-sensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, it is demonstrated that insulin potentiates the responsiveness of thin fibre afferents to capsaicin at muscle tissue levels as well as at the level of dorsal root ganglion neurons. In addition, it is demonstrated that insulin augments the sympathetic nerve activity response to capsaicin in vivo. These data suggest that sympathoexcitation is peripherally mediated via insulin-induced chemical sensitization. The present study proposes a possible physiological role of insulin in the regulation of chemical sensitivity in somatosensory thin fibre muscle afferents.


Subject(s)
Capsaicin , Ganglia, Spinal , Animals , Capsaicin/pharmacology , Ganglia, Spinal/physiology , Insulin/pharmacology , Mice , Muscle Fibers, Skeletal , Neurons/physiology , Rats , Rats, Sprague-Dawley , Rodentia , TRPV Cation Channels/physiology
9.
Neuroscience ; 479: 125-139, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34673142

ABSTRACT

Chronic widespread pain is one of the important issues to be solved in medical practice. Impaired spinal descending pain inhibitory system due to decreased monoamine neurotransmitters is assumed to cause nociceptive hypersensitivities in chronic painful conditions like that described in patients with fibromyalgia (FM). However, response behaviors and synaptic transmission of the spinal dorsal horn neurons in response to reserpine remain to be clarified. Here we examined the activities of superficial dorsal horn (SDH) neurons, as well as excitatory and inhibitory postsynaptic inputs to SDH neurons, using a putative rat model of FM that was established by injecting reserpine. Extracellular recordings in vivo revealed that SDH neurons were sensitized to mechanical stimulation applied to the neurons' receptive fields, and the mechanically sensitized neurons were spontaneously more active. The sensitizing effect was evident 1 day and 3 days after the reserpine treatment, but subsided 5 days after the treatment or later. Using patch-clamp recordings in vivo, spontaneous excitatory postsynaptic currents (sEPSCs) to SDH neurons were found to increase in the pain model, while spontaneous inhibitory postsynaptic currents (sIPSCs) to SDH neurons decreased. These results demonstrate that the SDH neurons were strongly sensitized in response to the reserpine treatment, and that increased excitatory and decreased inhibitory postsynaptic inputs could be responsible for the spinal nociceptive hypersensitivity in the putative FM model.


Subject(s)
Chronic Pain , Reserpine , Animals , Humans , Neurons , Patch-Clamp Techniques , Posterior Horn Cells , Rats , Reserpine/toxicity , Spinal Cord Dorsal Horn , Synaptic Transmission
11.
J Physiol Sci ; 71(1): 19, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34162322

ABSTRACT

Previous studies have shown that persistent limb immobilization using a cast increases nociceptive behavior to somatic stimuli in rats. However, the peripheral neural mechanisms of nociception remain unclear. Using single-fiber electrophysiological recordings in vitro, we examined the general characteristics of cutaneous C-fiber afferents in the saphenous nerve and their responsiveness to mechanical and heat stimuli in a rat model of immobilization-induced pain by subjecting the rats to hindlimb cast immobilization for 4 weeks. The mechanical response of C-fibers appeared to increase in the model; however, statistical analysis revealed that neither the response threshold nor the response magnitude was altered. The general characteristics and heat responses of the C-fibers were not altered. The number of microglia and cell diameters significantly increased in the superficial dorsal horn of the lumbar spinal cord. Thus, activated microglia-mediated spinal mechanisms are associated with the induction of nociceptive hypersensitivity in rats after persistent cast immobilization.


Subject(s)
Casts, Surgical/adverse effects , Hindlimb/physiology , Immobilization/adverse effects , Microglia/physiology , Nerve Fibers, Unmyelinated/physiology , Neurons, Afferent/physiology , Skin/innervation , Spinal Cord/physiology , Animals , Male , Nociception/physiology , Pain Measurement , Rats , Rats, Sprague-Dawley
12.
J Physiol ; 599(6): 1783-1798, 2021 03.
Article in English | MEDLINE | ID: mdl-33476055

ABSTRACT

KEY POINTS: Nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are essential for neuronal development and survival in embryo. However, after birth they play pivotal roles in the generation of hyperalgesia in many painful conditions. Both factors are believed to act on different groups of primary afferents, but interaction between them has not yet been studied. Here we show a synergism between the two factors. Intramuscular injection of a mixture of both factors at a low concentration, each of which alone had no effect, induced a significant muscular mechanical hyperalgesia in rats. We show that synergism occurs in the primary afferent neurons and find that about 25% primary afferents innervating the muscle express both TrkA (NGF receptor) and GFRα1 (GDNF receptor). We show by pharmacological means that afferent neurons with TrkA and GFRα1 express both TRPV1 and ASICs. Our data establish a basis for synergism between NGF and GDNF. In some inflammatory conditions both nerve growth factor (NGF) and glial cell line-derived neurotrophic factor (GDNF) are upregulated and play pivotal roles in inducing hyperalgesia. However, their interaction has not been studied. We examined whether and where interaction between both neurotrophic factors occurs in SD rats. Intramuscular injection to gastrocnemius muscle (GC) of a mixture of NGF (0.1 µm) and GDNF (0.008 µm), which alone had no effect, induced a significant mechanical hyperalgesia (F(6,30)  = 13.62, P = 0.0001), demonstrating synergism between the two factors. Phosphorylated extracellular signal-regulated kinase (pERK) immunoreactivity in dorsal root ganglia (DRGs) induced by compression of GC increased after injection of the mixture (P = 0.028, compared with PBS); thus the interaction of NGF and GDNF could occur at the primary afferent level. An in situ hybridization study (n = 4) demonstrated that 23.7-29.2% of GC-innervating DRG neurons coexpressed TrkA (NGF receptor) and GFRα1 (GDNF receptor). The cell size of the coexpressing GC DRG neurons showed no skewing towards the small size range but was distributed widely from the small to the large size ranges. Therefore, some of the coexpressing neurons with thin axons are thought to contribute to this mechanical hyperalgesia. The hyperalgesia was reversed by both amiloride (F(1,13)  = 5.056, P = 0.0425, compared with PBS) and capsazepine (F(1,10)  = 8.402, P = 0.0159, compared with DMSO), suggesting that the primary afferents sensitized by the mixture express both TRPV1 and ASICs. These results showed a basis of synergism between NGF and GDNF.


Subject(s)
Glial Cell Line-Derived Neurotrophic Factor , Nerve Growth Factor , Animals , Ganglia, Spinal , Hyperalgesia , Neurons, Afferent , Rats , Rats, Sprague-Dawley
13.
Neurosci Res ; 162: 22-30, 2021 Jan.
Article in English | MEDLINE | ID: mdl-31891739

ABSTRACT

Fibromyalgia (FM) is a debilitating disease characterized by generalized and persistent musculoskeletal pain. Although central mechanisms are strongly implicated in the pathogenesis of FM, the involvement of peripheral mechanisms is poorly understood. To understand the peripheral nociceptive mechanisms, we examined muscular nociceptors in an FM model, which was made by exposing rats to repeated cold stress (RCS). A single muscle C-fiber nociceptors were identified through the teased fiber technique using ex vivo muscle-nerve preparations. Response properties of C-fibers to noxious stimuli were systematically analyzed. Messenger RNA expression of neurotrophic factors and inflammatory mediators were also studied in the muscle. In the RCS group, the mechanical response threshold of C-fibers, measured using a ramp mechanical stimulus, was significantly decreased, and the response magnitude was significantly increased in the RCS group when compared with the SHAM group, where the environmental temperature was not altered. The general characteristics of C-fibers and the responsiveness to noxious cold and heat stimuli were similar between the two groups. Messenger RNAs of neurotrophic factors and inflammatory mediators were not changed in the muscle during and after RCS. These results suggest that augmentation of the mechanical response of muscle C-fiber nociceptors contributes to hyperalgesia in the RCS model.


Subject(s)
Fibromyalgia , Animals , Cold-Shock Response , Hot Temperature , Hyperalgesia/etiology , Nociception , Nociceptors , Physical Stimulation , Rats
14.
Heliyon ; 6(5): e03963, 2020 May.
Article in English | MEDLINE | ID: mdl-32478188

ABSTRACT

AIMS: The daily activity of osteoarthritis (OA) patients is limited by chronic pain and central sensitization. Although non-steroidal anti-inflammatory drugs (NSAIDs) and acetaminophen are the first-line drugs for the treatment of OA-related pain, their efficacy on central sensitization remains unclear. In the present study, we evaluated the effect of acetylsalicylic acid (ASA, Aspirin) using an OA model induced by monosodium iodoacetate (MIA), which has a similar disease progression to human OA. MAIN METHODS: Secondary hyperalgesia was assessed at the plantar surface of the hind paw by Von Frey test. We evaluated the expression of acid-sensing ion channel 3 (ASIC3) in dorsal root ganglia and that of tumor necrosis factor-α (TNF-α) and interleukin-1ß (IL-1ß) in the spinal cord, which may cause secondary hyperalgesia in OA, by immunohistochemical analysis and real-time qPCR. KEY FINDINGS: The administration of ASA attenuated secondary hyperalgesia at 1-3 weeks after MIA, while celecoxib, a selective cyclooxygenase (COX)-2 inhibitor, failed to attenuate secondary hyperalgesia at week 2 after MIA injection, suggesting that ASA exerts its analgesic effect through a COX-2-independent pathway. Immunohistochemical analysis of the dorsal root ganglia indicated that ASA reduced the expression of ASIC3 during OA progression. Expression of TNF-α mRNA, but not IL-1ß mRNA, in the spinal cord following MIA injection was suppressed by ASA administration. SIGNIFICANCE: These findings suggest that ASA may have the ability to attenuate secondary hyperalgesia through suppression of ASIC3 and/or TNF-α expression. ASA is therefore a clinically useful analgesic drug for treatment of secondary hyperalgesia in OA.

15.
J Appl Physiol (1985) ; 128(2): 296-306, 2020 02 01.
Article in English | MEDLINE | ID: mdl-31999528

ABSTRACT

Delayed-onset muscle soreness (DOMS) is a common but displeasing event induced by excessive muscle use or unaccustomed exercise and characterized by tenderness and movement-related pain in the exercised muscle. Thermal therapies, either icing or heating applied to muscles immediately after exercise, have been used as therapeutic interventions for DOMS. However, the mechanisms of their analgesic effects, and physiological and metabolic changes in the muscle during thermal therapy, remain unclear. In the present study, we investigated the effects of both thermal treatments on mechanical hyperalgesia of DOMS and physiological and muscle metabolite changes using the rat DOMS model induced by lengthening contraction (LC) to the gastrocnemius muscle. Heating treatment just after LC induced analgesic effects, while rats with icing treatment showed mechanical hyperalgesia similar to that of the LC group. Furthermore, increased physiological responses (e.g., muscle temperature and blood flow) following the LC were significantly kept high only in the rats with heating treatment. In addition, heating treatment increased metabolites involved in the improvement of blood flow and oxidative metabolisms in the exercised muscle. The results indicated that heating treatment just after LC has analgesic effects on DOMS, which might be mediated partly through the improvement of muscle oxidative metabolisms by changes in metabolites and elevated physiological responses.NEW & NOTEWORTHY Physiological effects of thermal therapy in the muscle and its mechanisms of analgesic effects remain unclear. The results indicated that heating, but not icing, treatment just after lengthening contractions induced analgesic effects in the rat muscle. Increases in hemodynamics, muscle temperature, and metabolites such as nicotinamide were more prominent in heating treatment, consistent with improvement of muscle oxidative metabolisms, which might reduce chemical factors to induce mechanical hyperalgesia.


Subject(s)
Analgesia/methods , Hyperalgesia , Muscle Contraction , Muscle, Skeletal/physiology , Myalgia/therapy , Physical Conditioning, Animal , Animals , Cold Temperature , Hot Temperature , Hyperalgesia/therapy , Rats , Rats, Sprague-Dawley
16.
J Physiol ; 597(20): 5049-5062, 2019 10.
Article in English | MEDLINE | ID: mdl-31468522

ABSTRACT

KEY POINTS: Insulin is known to activate the sympathetic nervous system centrally. A mechanical stimulus to tissues activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion neurons of these afferents. In the present study, we report the novel finding that insulin augments the mechanical responsiveness of thin fibre afferents not only at dorsal root ganglion, but also at muscle tissue levels. Our data suggest that sympathoexcitation is mediated via the insulin-induced mechanical sensitization peripherally. The present study proposes a novel physiological role of insulin in the regulation of mechanical sensitivity in somatosensory thin fibre afferents. ABSTRACT: Insulin activates the sympathetic nervous system, although the mechanism underlying insulin-induced sympathoexcitation remains to be determined. A mechanical stimulus to tissues such as skin and/or skeletal muscle, no matter whether the stimulation is noxious or not, activates the sympathetic nervous system via thin fibre afferents. Evidence suggests that insulin modulates putative mechanosensitive channels in the dorsal root ganglion (DRG) neurons of these afferents. Accordingly, we investigated whether insulin augments whole-cell current responses to mechanical stimuli in small DRG neurons of normal healthy mice. We performed whole-cell patch clamp recordings using cultured DRG neurons and observed mechanically-activated (MA) currents induced by mechanical stimuli applied to the cell surface. Local application of vehicle solution did not change MA currents or mechanical threshold in cultured DRG neurons. Insulin (500 mU mL-1 ) significantly augmented the amplitude of MA currents (P < 0.05) and decreased the mechanical threshold (P < 0.05). Importantly, pretreatment with the insulin receptor antagonist, GSK1838705, significantly suppressed the insulin-induced potentiation of the mechanical response. We further examined the impact of insulin on thin fibre muscle afferent activity in response to mechanical stimuli in normal healthy rats in vitro. Using a muscle-nerve preparation, we recorded single group IV fibre activity to a ramp-shaped mechanical stimulation. Insulin significantly decreased mechanical threshold (P < 0.05), although it did not significantly increase the response magnitude to the mechanical stimulus. In conclusion, these data suggest that insulin augments the mechanical responsiveness of small DRG neurons and potentially sensitizes group IV afferents to mechanical stimuli at the muscle tissue level, possibly contributing to insulin-induced sympathoexcitation.


Subject(s)
Action Potentials/physiology , Ganglia, Spinal/cytology , Insulin/pharmacology , Mechanotransduction, Cellular/drug effects , Muscle Fibers, Skeletal/physiology , Neurons/physiology , Afferent Pathways/drug effects , Animals , Ganglia, Spinal/physiology , Insulin/physiology , Male , Mechanotransduction, Cellular/physiology , Mice , Mice, Inbred C57BL , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Receptor, Insulin/antagonists & inhibitors
17.
Eur J Pain ; 23(10): 1801-1813, 2019 11.
Article in English | MEDLINE | ID: mdl-31314951

ABSTRACT

BACKGROUND: Delayed onset muscle soreness (DOMS) is characterized by mechanical hyperalgesia after lengthening contractions (LC). It is relatively common and causes disturbance for many people who require continuous exercise, yet its molecular and peripheral neural mechanisms are poorly understood. METHODS: We examined whether muscular myelinated Aδ-fibres, in addition to unmyelinated C-fibres, are involved in LC-induced mechanical hypersensitivity, and whether acid-sensing ion channel (ASIC)-3 expressed in thin-fibre afferents contributes to this type of pain using a rat model of DOMS. The peripheral contribution of ASIC3 was investigated using single-fibre electrophysiological recordings in extensor digitorum longus muscle-peroneal nerve preparations in vitro. RESULTS: Behavioural tests demonstrated a significant decrease of the muscular mechanical withdrawal threshold following LC to ankle extensor muscles, and it was improved by intramuscular injection of APETx2 (2.2 µM), a selective blocker of ASIC3. The lower concentration of APETx2 (0.22 µM) and its vehicle had no effect on the threshold. Intramuscular injection of APETx2 (2.2 µM) in naïve rats without LC did not affect the withdrawal threshold. In the ankle extensor muscles that underwent LC one day before the electrophysiological recordings, the mechanical response of Aδ- and C-fibres was significantly facilitated (i.e. decreased response threshold and increased magnitude of the response). The facilitated mechanical response of the Aδ- and C-fibres was significantly suppressed by selective blockade of ASIC3 with APETx2, but not by its vehicle. CONCLUSIONS: These results clearly indicate that ASIC3 contributes to the augmented mechanical response of muscle thin-fibre receptors in delayed onset muscular mechanical hypersensitivity after LC. SIGNIFICANCE: Here, we show that not only C- but also Aδ-fibre nociceptors in the muscle are involved in mechanical hypersensitivity after lengthening contractions, and that acid-sensing ion channel (ASIC)-3 expressed in the thin-fibre nociceptors is responsible for the mechanical hypersensitivity. ASIC3 might be a novel pharmacological target for pain after exercise.


Subject(s)
Acid Sensing Ion Channels/metabolism , Hyperalgesia/metabolism , Muscle, Skeletal/innervation , Myalgia/metabolism , Nerve Fibers, Myelinated/metabolism , Nerve Fibers, Unmyelinated/metabolism , Physical Conditioning, Animal , Acid Sensing Ion Channel Blockers/pharmacology , Animals , Injections, Intramuscular , Male , Muscle Contraction , Muscle, Skeletal/drug effects , Muscle, Skeletal/metabolism , Nerve Fibers, Myelinated/drug effects , Nerve Fibers, Unmyelinated/drug effects , Neural Conduction , Nociceptors , Pain Measurement , Peroneal Nerve/drug effects , Peroneal Nerve/metabolism , Rats , Rats, Sprague-Dawley
18.
Behav Pharmacol ; 30(7): 547-554, 2019 10.
Article in English | MEDLINE | ID: mdl-31188139

ABSTRACT

Many people suffer from a major depressive disorder, and chronic pain conditions are often associated with depressive symptoms. Neurotropin, an extract from the inflamed skin of rabbits inoculated with vaccinia virus, has been used for pain relief. Decrease of brain-derived neurotrophic factor (BDNF) in the brain is one of the proposed mechanisms for the major depressive disorders, and Neurotropin has been reported to restore the decreased BDNF in the hippocampus. In this experiment, we examined whether Neurotropin had an antidepressant-like effect in a model of fibromyalgia and whether BDNF in the brain was altered after repeated cold stress (RCS) and Neurotropin treatment. Rats were exposed to RCS because these animals have been used as a model for fibromyalgia syndrome. Depression-like behavior was evaluated using elongation of immobility time in a forced swimming test. Change in expression of BDNF in the brain was also examined by western blot analysis of several brain areas. Depression-like behavior in the forced swimming test was significantly increased 10-14 days after RCS, and this increase was reversed by a single injection of an antidepressant, imipramine, but not by PBS. Increased depression-like behavior was also dose-dependently suppressed by a single administration of Neurotropin (50-200 NU/kg, subcutaneously). BDNF expression was not changed in the brain areas examined (hippocampus, amygdala, prefrontal cortex, and striatum) either after RCS or by Neurotropin injected after RCS. These results suggest that RCS induced a depression-like state in rats, and Neurotropin reversed this state. However, we did not observe a BDNF-related mechanism for these effects.


Subject(s)
Cold-Shock Response/drug effects , Depressive Disorder, Major/drug therapy , Polysaccharides/pharmacology , Animals , Antidepressive Agents/pharmacology , Brain/drug effects , Brain-Derived Neurotrophic Factor/metabolism , Depression/drug therapy , Depression/etiology , Depressive Disorder, Major/etiology , Disease Models, Animal , Hippocampus/drug effects , Male , Pain/drug therapy , Polysaccharides/metabolism , Rats , Rats, Sprague-Dawley , Stress, Psychological/metabolism
19.
J Appl Physiol (1985) ; 126(4): 1160-1170, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30763166

ABSTRACT

Exercise-induced tissue acidosis augments the exercise pressor reflex (EPR). One reason for this may be acid-induced mechanical sensitization in thin-fiber muscle afferents, which is presumably related to EPR. Acid-induced sensitization to mechanical stimulation has been reported to be attenuated in cultured primary-sensory neurons by exogenous chondroitin sulfate (CS) and chondroitinase ABC, suggesting that the extracellular matrix CS proteoglycan is involved in this sensitization. The purpose of this study was to clarify whether acid-induced sensitization of the mechanical response in the thin-fiber muscle afferents is also suppressed by exogenous CS and chondroitinase ABC using a single-fiber recording technique. A total of 88 thin fibers (conduction velocity <15.0 m/s) dissected from 86 male Sprague-Dawley rats were identified. A buffer solution at pH 6.2 lowered their mechanical threshold and increased their response magnitude. Five minutes after CS (0.3 and 0.03%) injection near the receptive field, these acid-induced changes were significantly reduced. No significant difference in attenuation was detected between the two CS concentrations. Chondroitinase ABC also significantly attenuated this sensitization. The control solution (0% CS) did not significantly alter the mechanical sensitization. Furthermore, no significant differences were detected in this sensitization and CS-based suppression between fibers with and without acid-sensitive channels [transient receptor potential vanilloid 1 (TRPV1), acid-sensing ion channel (ASIC)]. In addition, this mechanical sensitization was not changed by TRPV1 and ASIC antagonists, suggesting that these ion channels are not involved in the acid-induced mechanical sensitization of muscle thin-fiber afferents. In conclusion, CS administration has a potential to attenuate the acidosis-induced exaggeration of muscle mechanoreflex. NEW & NOTEWORTHY We found that exogenous chondroitin sulfate attenuated acid-induced mechanical sensitization in thin-fiber muscle afferents that play a crucial role in the exercise pressor reflex. This finding suggests that extracellular matrix chondroitin sulfate proteoglycans may be involved in the mechanism of acid-induced mechanical sensitization and that daily intake of chondroitin sulfate may potentially attenuate this amplification of muscle mechanoreflex and therefore reduce muscle pain related to acidic muscle conditions.


Subject(s)
Acids/metabolism , Chondroitin Sulfates/pharmacology , Muscle Fibers, Skeletal/drug effects , Neurons, Afferent/drug effects , Acid Sensing Ion Channel Blockers/pharmacology , Acid Sensing Ion Channels/metabolism , Animals , Baroreflex/drug effects , Hindlimb/drug effects , Hindlimb/metabolism , Male , Muscle Fibers, Skeletal/metabolism , Neurons, Afferent/metabolism , Rats , Rats, Sprague-Dawley , Reflex/drug effects , TRPV Cation Channels/metabolism
20.
Sci Rep ; 8(1): 16782, 2018 11 14.
Article in English | MEDLINE | ID: mdl-30429536

ABSTRACT

Mechanotransduction plays important roles in many sensory processes, including touch, pain, hearing, and proprioception. However, the molecular mechanisms of mechanical nociception have remained unclear. Here, we showed that elimination of transient receptor potential vanilloid 2 (TRPV2) in mice resulted in the deficit of mechanical nociception due to the lack of mechanosensitivity in a subclass of adult primary sensory neurons (PSNs). The PSN-specific TRPV2-deficient mice showed behavioural impairment of mechanical nociception in tail-pressure and von Frey hair tests, without defects in axonal growth and neuronal composition. Conversely, the mice displayed normal behaviour to noxious heat and non-noxious tactile stimuli. Furthermore, based on the stretch-evoked Ca2+ response of cultured PSNs, we characterised two types of stretch-activated neurons in normal mice; fast-decay high-threshold and slow-decay low-threshold mechanosensitive. The cultured neurons from TRPV2-deficient mice lacked stretch-evoked Ca2+ responses by fast-decay neurons normally activated by high-threshold mechanical stimulation. These results demonstrated that TRPV2 has a critical role in mechanical nociception in the adult somatosensory system.


Subject(s)
Calcium Channels/physiology , Mechanotransduction, Cellular/physiology , Nociception/physiology , Sensory Receptor Cells/physiology , TRPV Cation Channels/physiology , Animals , Biomechanical Phenomena/physiology , Calcium/pharmacology , Calcium Channels/deficiency , Cells, Cultured , Mechanoreceptors/metabolism , Mechanoreceptors/physiology , Mice , Sensory Receptor Cells/drug effects , TRPV Cation Channels/deficiency
SELECTION OF CITATIONS
SEARCH DETAIL
...