Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Appl Radiat Isot ; 57(2): 225-33, 2002 Aug.
Article in English | MEDLINE | ID: mdl-12150282

ABSTRACT

Quantitative analysis of the two-dimensional image data obtained with the positron-emitting tracer imaging system (PETIS) for plant physiology has been carried out using a transfer function analysis method. While a cut leaf base of Chinese chive (Allium tuberosum Rottler) or a cut stem of soybean (Glycine max L.) was immersed in an aqueous solution containing the [18F] F- ion or [13N]NO3- ion, tracer images of the leaf of Chinese chive and the trifoliate of soybean were recorded with PETIS. From the time sequence of images, the tracer transfer function was estimated from which the speed of tracer transport and the fraction moved between specified image positions were deduced.


Subject(s)
Tomography, Emission-Computed/statistics & numerical data , Allium/physiology , Biological Transport, Active , Data Interpretation, Statistical , Fluorine Radioisotopes/pharmacokinetics , Image Processing, Computer-Assisted , Nitrogen Radioisotopes/pharmacokinetics , Plant Physiological Phenomena , Glycine max/physiology
2.
J Exp Bot ; 52(355): 277-83, 2001 Feb.
Article in English | MEDLINE | ID: mdl-11283172

ABSTRACT

Non-nodulated soybean (Glycine max (L.) Merr.) plants were cultivated hydroponically under N-sufficient (5 mM NaNO(3)) or N-deficient (0.5 mM NaNO(3)) conditions. (13)N- or (15)N- labelled nitrate was fed to the cut end of the stems, and the accumulation of nitrate-derived N in the pods, nodes and stems was compared. Real-time images of (13)N distribution in stems, petioles and pods were obtained using a Positron Emitting Tracer Imaging System for a period of 40 min. The results indicated that the radioactivity in the pods of N-deficient plants was about 10 times higher than that of N-sufficient plants, although radioactivity in the stems and nodes of N-deficient versus N-sufficient plants was not different. A similar result was obtained by supplying (15)NO(3) to cut soybean shoots for 1 h. The fact that the N translocation into the pods from NO(3) fed to the stem base was much faster in N-deficient plants may be due to the strong sink activity of the pods in N-deficient plants. Alternatively, the redistribution of N from the leaves to the pods via the phloem may be accelerated in N-deficient plants. The temporal accumulation of (13)NO(3) in nodes was suggested in both N-sufficient and N-deficient plants. In one (13)NO(3) pulse-chase experiment, radioactivity in the stem declined rapidly after transferring the shoot from the (13)NO(3) solution to non-labelled NO(3); in contrast, the radioactivity in the node declined minimally during the same time period.


Subject(s)
Glycine max/metabolism , Nitrogen/pharmacokinetics , Seeds/metabolism , Amino Acids/analysis , Fruit/metabolism , Hydroponics , Isotope Labeling , Nitrates/analysis , Nitrogen/administration & dosage , Nitrogen/deficiency , Nitrogen Radioisotopes/pharmacokinetics , Plant Shoots/chemistry , Plant Shoots/metabolism , Seeds/chemistry , Glycine max/chemistry , Tomography, Emission-Computed
3.
Plant Physiol ; 125(4): 1743-53, 2001 Apr.
Article in English | MEDLINE | ID: mdl-11299355

ABSTRACT

The ammonium ion is an indispensable nitrogen source for crops, especially paddy rice (Oryza sativa L. cv Nipponbare). Until now, it has been impossible to measure ammonium uptake and nitrogen movement in plants in real time. Using the new technologies of PETIS (positron emitting tracer imaging system) and PMPS (positron multi-probe system), we were able to visualize the real time translocation of nitrogen and water in rice plants. We used positron-emitting 13N-labeled ammonium (13NH4+) and 15O-water to monitor the movement. In plants cultured under normal conditions, 13NH4+ supplied to roots was taken up, and a 13N signal was detected at the discrimination center, the basal part of the shoots, within 2 minutes. This rapid translocation of (13)N was almost completely inhibited by a glutamine synthetase inhibitor, methionine sulfoximine. In general, nitrogen deficiency enhanced 13N translocation to the discrimination center. In the dark, 13N translocation to the discrimination center was suppressed to 40% of control levels, whereas 15O-water flow from the root to the discrimination center stopped completely in the dark. In abscisic acid-treated rice, 13N translocation to the discrimination center was doubled, whereas translocation to leaves decreased to 40% of control levels. Pretreatment with NO3- for 36 hours increased 13N translocation from the roots to the discrimination center to 5 times of control levels. These results suggest that ammonium assimilation (from the roots to the discrimination center) depends passively on water flow, but actively on NH4+-transporter(s) or glutamine synthetase(s).


Subject(s)
Nitrogen Radioisotopes/pharmacokinetics , Oryza/physiology , Quaternary Ammonium Compounds/metabolism , Biological Transport/drug effects , Biological Transport/physiology , Darkness , Enzyme Inhibitors/pharmacology , Glutamate-Ammonia Ligase/antagonists & inhibitors , Kinetics , Methionine Sulfoximine/pharmacology , Oxygen Radioisotopes/pharmacokinetics , Plant Leaves/physiology , Water/metabolism
4.
Physiol Plant ; 113(3): 359-367, 2001 Nov.
Article in English | MEDLINE | ID: mdl-12060281

ABSTRACT

Water (H2 15O) translocation from the roots to the top of rice plants (Oryza saliva L. cv. Nipponbare) was visualized over time by a positron-emitting tracer imaging system (PETIS). H2 15O flow was activated 8 min after plants were exposed to bright light (1 500 &mgr;mol m-2 s-1). When the light was subsequently removed, the flow gradually slowed and completely stopped after 12 min. In plants exposed to low light (500 &mgr;mol m-2 s-1), H2 15O flow was activated more slowly, and a higher translocation rate of H2 15O was observed in the same low light at the end of the next dark period. NaCl (80 mM) and methylmercury (1 mM) directly suppressed absorption of H2 15O by the roots, while methionine sulfoximine (1 mM), abscisic acid (10 &mgr;M) and carbonyl cyanide m-chlorophenylhydrazone (10 mM) were transported to the leaves and enhanced stomatal closure, reducing H2 15O translocation.

SELECTION OF CITATIONS
SEARCH DETAIL
...