Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arch Environ Contam Toxicol ; 85(4): 417-428, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37603055

ABSTRACT

Glyphosate is the most widely used herbicide worldwide due to its efficacy in weed control in agriculture. This herbicide has been consistently detected in the aquatic environment, causing harmful consequences to nontarget organisms residing in agricultural regions. In this study, we assessed the effects of environmentally relevant concentrations of glyphosate (30-100 µg/L) on the early life stages of the viviparous fish Jenynsia multidentata through biochemical and locomotor endpoints. At 96 h of exposure, 30 and 65 µg/L glyphosate caused an increase in acetylcholinesterase (AChE) activity, and 65 µg/L glyphosate also augmented the levels of lipid peroxidation. Glyphosate at 100 µg/L did not alter the activity of acetylcholinesterase or the levels of lipid peroxidation, but it stimulated the activity of the cellular detoxification enzyme glutathione S-transferase. In addition, all concentrations affected the swimming of the fish. Under light conditions, glyphosate caused hypolocomotion at all concentrations tested, whereas under dark conditions, this was observed at 30 and 100 µg/L. Hyperlocomotion was observed at 65 µg/L glyphosate. These findings are alarming for the health of fish, such as J. multidentata that inhabit streams that pass through agricultural areas, especially for the early life stages of these fish. Research studying the effects of pollutants on native species is relevant to improve regulation that protects aquatic ecosystems.


Subject(s)
Herbicides , Water Pollutants, Chemical , Animals , Acetylcholinesterase , Ecosystem , Herbicides/toxicity , Fishes , Water Pollutants, Chemical/toxicity , Glyphosate
2.
Chemosphere ; 248: 125959, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32035379

ABSTRACT

The emergent demand for food production has increased the widespread use of pesticides, especially glyphosate-based herbicides as they can protect different types of crops, especially transgenic ones. Molecules of glyphosate have been found in water bodies around the world, and its presence can cause negative effects on non-target organisms, such as fish. Glyphosate toxicity appears to be systemic in fish but does not affect their organs equally. Also, its formulations can be more toxic than pure glyphosate. In this sense, we investigated if these variations in toxicity could be related to ATP binding cassette subfamily C (ABCC) transporters and the cellular detoxification capacity, following exposure to herbicides. Thus, adults of Danio rerio were exposed (24 and 96 h) to glyphosate and Roundup Transorb® (RT) at an environmental concentration of 0.1 mg/L, and the activity of ABCC proteins and gene expression of five isoforms of ABCC were analyzed. Glyphosate and RT exposure increased ABCC protein activity and gene expression up to 3-fold when compared to controls, indicating the activation of detoxification mechanisms. Only in the brain of D. rerio, the exposure to RT did not stimulate the activity of ABCC proteins, neither the expression of genes abcc1 and abcc4 that responded to the exposure to pure glyphosate. These results may suggest that the brain is more sensitive to RT than the other target-tissues since the mechanism of detoxification via ABCC transporters were not activated in this tissue as it was in the other.


Subject(s)
Glycine/analogs & derivatives , Herbicides/toxicity , Zebrafish/physiology , ATP-Binding Cassette Transporters , Animals , Glycine/toxicity , Glyphosate
SELECTION OF CITATIONS
SEARCH DETAIL
...