Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
1.
bioRxiv ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38854026

ABSTRACT

A major mechanism of insecticide resistance in insect pests is knock-down resistance (kdr) caused by mutations in the voltage-gated sodium channel (Vgsc) gene. Despite being common in most malaria Anopheles vector species, kdr mutations have never been observed in Anopheles funestus, the principal malaria vector in Eastern and Southern Africa. While monitoring 10 populations of An. funestus in Tanzania, we unexpectedly found resistance to DDT, a banned insecticide, in one location. Through whole-genome sequencing of 333 An. funestus samples from these populations, we found 8 novel amino acid substitutions in the Vgsc gene, including the kdr variant, L976F (L1014F in An. gambiae), in tight linkage disequilibrium with another (P1842S). The mutants were found only at high frequency in one region, with a significant decline between 2017 and 2023. Notably, kdr L976F was strongly associated with survivorship to the exposure to DDT insecticide, while no clear association was noted with a pyrethroid insecticide (deltamethrin). Further study is necessary to identify the origin and spread of kdr in An. funestus, and the potential threat to current insecticide-based vector control in Africa.

2.
Parasit Vectors ; 17(1): 261, 2024 Jun 17.
Article in English | MEDLINE | ID: mdl-38886827

ABSTRACT

BACKGROUND: Malaria transmission in Tanzania is driven by mosquitoes of the Anopheles gambiae complex and Anopheles funestus group. The latter includes An. funestus s.s., an anthropophilic vector, which is now strongly resistant to public health insecticides, and several sibling species, which remain largely understudied despite their potential as secondary vectors. This paper provides the initial results of a cross-country study of the species composition, distribution and malaria transmission potential of members of the Anopheles funestus group in Tanzania. METHODS: Mosquitoes were collected inside homes in 12 regions across Tanzania between 2018 and 2022 using Centres for Disease Control and Prevention (CDC) light traps and Prokopack aspirators. Polymerase chain reaction (PCR) assays targeting the noncoding internal transcribed spacer 2 (ITS2) and 18S ribosomal DNA (18S rDNA) were used to identify sibling species in the An. funestus group and presence of Plasmodium infections, respectively. Where DNA fragments failed to amplify during PCR, we sequenced the ITS2 region to identify any polymorphisms. RESULTS: The following sibling species of the An. funestus group were found across Tanzania: An. funestus s.s. (50.3%), An. parensis (11.4%), An. rivulorum (1.1%), An. leesoni (0.3%). Sequencing of the ITS2 region in the nonamplified samples showed that polymorphisms at the priming sites of standard species-specific primers obstructed PCR amplification, although the ITS2 sequences closely matched those of An. funestus s.s., barring these polymorphisms. Of the 914 samples tested for Plasmodium infections, 11 An. funestus s.s. (1.2%), and 2 An. parensis (0.2%) individuals were confirmed positive for P. falciparum. The highest malaria transmission intensities [entomological inoculation rate (EIR)] contributed by the Funestus group were in the north-western region [108.3 infectious bites/person/year (ib/p/y)] and the south-eastern region (72.2 ib/p/y). CONCLUSIONS: Whereas An. funestus s.s. is the dominant malaria vector in the Funestus group in Tanzania, this survey confirms the occurrence of Plasmodium-infected An. parensis, an observation previously made in at least two other occasions in the country. The findings indicate the need to better understand the ecology and vectorial capacity of this and other secondary malaria vectors in the region to improve malaria control.


Subject(s)
Anopheles , Malaria , Mosquito Vectors , Anopheles/genetics , Anopheles/classification , Anopheles/parasitology , Anopheles/physiology , Animals , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/parasitology , Mosquito Vectors/classification , Mosquito Vectors/physiology , Malaria/transmission , Malaria/epidemiology , Humans , RNA, Ribosomal, 18S/genetics , Polymerase Chain Reaction , Female , Plasmodium/genetics , Plasmodium/isolation & purification , Plasmodium/classification , DNA, Ribosomal Spacer/genetics
3.
Parasit Vectors ; 17(1): 230, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760849

ABSTRACT

BACKGROUND: Anopheles funestus is a leading vector of malaria in most parts of East and Southern Africa, yet its ecology and responses to vector control remain poorly understood compared with other vectors such as Anopheles gambiae and Anopheles arabiensis. This study presents the first large-scale survey of the genetic and phenotypic expression of insecticide resistance in An. funestus populations in Tanzania. METHODS: We performed insecticide susceptibility bioassays on An. funestus mosquitoes in nine regions with moderate-to-high malaria prevalence in Tanzania, followed by genotyping for resistance-associated mutations (CYP6P9a, CYP6P9b, L119F-GSTe2) and structural variants (SV4.3 kb, SV6.5 kb). Generalized linear models were used to assess relationships between genetic markers and phenotypic resistance. An interactive R Shiny tool was created to visualize the data and support evidence-based interventions. RESULTS: Pyrethroid resistance was universal but reversible by piperonyl-butoxide (PBO). However, carbamate resistance was observed in only five of the nine districts, and dichloro-diphenyl-trichloroethane (DDT) resistance was found only in the Kilombero valley, south-eastern Tanzania. Conversely, there was universal susceptibility to the organophosphate pirimiphos-methyl in all sites. Genetic markers of resistance had distinct geographical patterns, with CYP6P9a-R and CYP6P9b-R alleles, and the SV6.5 kb structural variant absent or undetectable in the north-west but prevalent in all other sites, while SV4.3 kb was prevalent in the north-western and western regions but absent elsewhere. Emergent L119F-GSTe2, associated with deltamethrin resistance, was detected in heterozygous form in districts bordering Mozambique, Malawi and the Democratic Republic of Congo. The resistance landscape was most complex in western Tanzania, in Tanganyika district, where all five genetic markers were detected. There was a notable south-to-north spread of resistance genes, especially CYP6P9a-R, though this appears to be interrupted, possibly by the Rift Valley. CONCLUSIONS: This study underscores the need to expand resistance monitoring to include An. funestus alongside other vector species, and to screen for both the genetic and phenotypic signatures of resistance. The findings can be visualized online via an interactive user interface and could inform data-driven decision-making for resistance management and vector control. Since this was the first large-scale survey of resistance in Tanzania's An. funestus, we recommend regular updates with greater geographical and temporal coverage.


Subject(s)
Anopheles , Insecticide Resistance , Insecticides , Malaria , Mosquito Vectors , Animals , Anopheles/genetics , Anopheles/drug effects , Insecticide Resistance/genetics , Tanzania/epidemiology , Mosquito Vectors/genetics , Mosquito Vectors/drug effects , Insecticides/pharmacology , Malaria/transmission , Malaria/epidemiology , Genetic Markers , Pyrethrins/pharmacology , Genotype , Mutation
4.
Parasit Vectors ; 14(1): 514, 2021 Oct 07.
Article in English | MEDLINE | ID: mdl-34620227

ABSTRACT

BACKGROUND: Wild populations of Anopheles mosquitoes are generally thought to mate outdoors in swarms, although once colonized, they also mate readily inside laboratory cages. This study investigated whether the malaria vectors Anopheles funestus and Anopheles arabiensis can also naturally mate inside human dwellings. METHOD: Mosquitoes were sampled from three volunteer-occupied experimental huts in a rural Tanzanian village at 6:00 p.m. each evening, after which the huts were completely sealed and sampling was repeated at 11:00 p.m and 6 a.m. the next morning to compare the proportions of inseminated females. Similarly timed collections were done inside local unsealed village houses. Lastly, wild-caught larvae and pupae were introduced inside or outside experimental huts constructed inside two semi-field screened chambers. The huts were then sealed and fitted with exit traps, allowing mosquito egress but not entry. Mating was assessed in subsequent days by sampling and dissecting emergent adults caught indoors, outdoors and in exit traps. RESULTS: Proportions of inseminated females inside the experimental huts in the village increased from approximately 60% at 6 p.m. to approximately 90% the following morning despite no new mosquitoes entering the huts after 6 p.m. Insemination in the local homes increased from approximately 78% to approximately 93% over the same time points. In the semi-field observations of wild-caught captive mosquitoes, the proportions of inseminated An. funestus were 20.9% (95% confidence interval [CI]: ± 2.8) outdoors, 25.2% (95% CI: ± 3.4) indoors and 16.8% (± 8.3) in exit traps, while the proportions of inseminated An. arabiensis were 42.3% (95% CI: ± 5.5) outdoors, 47.4% (95% CI: ± 4.7) indoors and 37.1% (CI: ± 6.8) in exit traps. CONCLUSION: Wild populations of An. funestus and An. arabiensis in these study villages can mate both inside and outside human dwellings. Most of the mating clearly happens before the mosquitoes enter houses, but additional mating happens indoors. The ecological significance of such indoor mating remains to be determined. The observed insemination inside the experimental huts fitted with exit traps and in the unsealed village houses suggests that the indoor mating happens voluntarily even under unrestricted egress. These findings may inspire improved vector control, such as by targeting males indoors, and potentially inform alternative methods for colonizing strongly eurygamic Anopheles species (e.g. An. funestus) inside laboratories or semi-field chambers.


Subject(s)
Anopheles/physiology , Housing , Malaria/transmission , Mosquito Vectors/physiology , Sexual Behavior, Animal , Animals , Anopheles/classification , Anopheles/parasitology , Female , Humans , Insect Bites and Stings , Malaria/parasitology , Male , Mosquito Control/methods , Rural Population
5.
Malar J ; 18(1): 282, 2019 Aug 22.
Article in English | MEDLINE | ID: mdl-31438957

ABSTRACT

BACKGROUND: Effective malaria surveillance requires detailed assessments of mosquitoes biting indoors, where interventions such as insecticide-treated nets work best, and outdoors, where other interventions may be required. Such assessments often involve volunteers exposing their legs to attract mosquitoes [i.e., human landing catches (HLC)], a procedure with significant safety and ethical concerns. Here, an exposure-free, miniaturized, double-net trap (DN-Mini) is used to assess relationships between indoor-outdoor biting preferences of malaria vectors, Anopheles arabiensis and Anopheles funestus, and their physiological ages (approximated by parity and insemination states). METHODS: The DN-Mini is made of UV-resistant netting on a wooden frame and PVC base. At 100 cm × 60 cm × 180 cm, it fits indoors and outdoors. It has a protective inner chamber where a volunteer sits and collects host-seeking mosquitoes entrapped in an outer chamber. Experiments were conducted in eight Tanzanian villages using DN-Mini to: (a) estimate nightly biting and hourly biting proportions of mosquitoes indoors and outdoors; (b) compare these proportions to previous estimates by HLC in same villages; and, (c) compare distribution of parous (proxy for potentially infectious) and inseminated mosquitoes indoors and outdoors. RESULTS: More than twice as many An. arabiensis were caught outdoors as indoors (p < 0.001), while An. funestus catches were marginally higher indoors than outdoors (p = 0.201). Anopheles arabiensis caught outdoors also had higher parity and insemination proportions than those indoors (p < 0.001), while An. funestus indoors had higher parity and insemination than those outdoors (p = 0.04). Observations of indoor-biting and outdoor-biting proportions, hourly biting patterns and overall species diversities as measured by DN-Mini, matched previous HLC estimates. CONCLUSIONS: Malaria vectors that are behaviourally adapted to bite humans outdoors also have their older, potentially infectious sub-populations concentrated outdoors, while those adapted to bite indoors have their older sub-populations concentrated indoors. Here, potentially infectious An. arabiensis more likely bite outdoors than indoors, while potentially infectious An. funestus more likely bite indoors. These observations validate previous evidence that even outdoor-biting mosquitoes regularly enter houses when young. They also demonstrate efficacy of DN-Mini for measuring indoor-outdoor biting behaviours of mosquitoes, their hourly biting patterns and epidemiologically relevant parameters, e.g., parity and insemination status, without exposure to volunteers. The trap is easy-to-use, easy-to-manufacture and affordable (prototypes cost ~ 100 US$/unit).


Subject(s)
Anopheles/physiology , Entomology/methods , Environment , Mosquito Vectors/physiology , Age Factors , Animals , Feeding Behavior , Malaria , Species Specificity
6.
Malar J ; 18(1): 29, 2019 Jan 29.
Article in English | MEDLINE | ID: mdl-30696441

ABSTRACT

BACKGROUND: Anopheles funestus mosquitoes currently contribute more than 85% of ongoing malaria transmission events in south-eastern Tanzania, even though they occur in lower densities than other vectors, such as Anopheles arabiensis. Unfortunately, the species ecology is minimally understood, partly because of difficulties in laboratory colonization. This study describes the first observations of An. funestus swarms in Tanzania, possibly heralding new opportunities for control. METHOD: Using systematic searches by community-based volunteers and expert entomologists, An. funestus swarms were identified in two villages in Ulanga and Kilombero districts in south-eastern Tanzania, starting June 2018. Swarms were characterized by size, height, start- and end-times, presence of copulation and associated environmental features. Samples of male mosquitoes from the swarms were examined for sexual maturity by observing genitalia rotation, species identity using polymerase chain reaction and wing sizes. RESULTS: 581 An. funestus (98.1% males (n = 570) and 1.9% (n = 11) females) and 9 Anopheles gambiae sensu lato (s.l.) males were sampled using sweep nets from the 81 confirmed swarms in two villages (Ikwambi in Kilombero district and Tulizamoyo in Ulanga district). Six copulation events were observed in the swarms. Mean density (95% CL) of An. funestus caught/swarm/village/evening was 6.6 (5.9-7.2) in Tulizamoyo and 10.8 (5.8-15.8) in Ikwambi. 87.7% (n = 71) of the swarms were found in Tulizamoyo, while 12.3% (n = 10) were in Ikwambi. Mean height of swarms was 1.7 m (0.9-2.5 m), while mean duration was 12.9 (7.9-17.9) minutes. The PCR analysis confirmed that 100% of all An. funestus s.l. samples processed were An. funestus sensu stricto. Mean wing length of An. funestus males was 2.47 mm (2.0-2.8 mm), but there was no difference between swarming males and indoor-resting males. Most swarms (95.0%) occurred above bare ground, sometime on front lawns near human dwellings, and repeatedly in the same locations. CONCLUSION: This study has demonstrated occurrence of An. funestus swarms for the first time in Tanzania. Further investigations could identify new opportunities for improved control of this dominant malaria vector, possibly by targeting the swarms.


Subject(s)
Anopheles/physiology , Mosquito Vectors/physiology , Animals , Female , Male , Population Dynamics , Social Behavior , Tanzania
7.
Malar J ; 17(1): 327, 2018 09 10.
Article in English | MEDLINE | ID: mdl-30200974

ABSTRACT

Following publication of the original article [1], the author flagged that the clause "and competing household priorities" was missing from the second sentence of the conclusion section of the Abstract; while this clause was in the Conclusion section of the main article text.

8.
Malar J ; 17(1): 298, 2018 Aug 17.
Article in English | MEDLINE | ID: mdl-30119666

ABSTRACT

BACKGROUND: House improvement and environmental management can significantly improve malaria transmission control in endemic communities. This study assessed the influence of physical characteristics of houses and surrounding environments on mosquito biting risk in rural Tanzanian villages, and examined knowledge and perceptions of residents on relationships between these factors and malaria transmission. The study further assessed whether people worried about these risks and how they coped. METHODS: Entomological surveys of indoor mosquito densities were conducted across four villages in Ulanga district, south-eastern Tanzania. The survey involved 48 sentinel houses sampled monthly and other sets of 48 houses randomly recruited each month for one-off sampling over 12 months. Physical characteristics of the houses and surrounding environments were recorded. Questionnaire surveys were administered to 200 household heads to assess their knowledge and concerns regarding the observed housing and environmental features, and whether they considered these features when constructing houses. Focus group discussions, were conducted to clarify emergent themes on people's perceptions on relationships between housing or environmental factors and malaria transmission. RESULTS: The entomological surveys showed statistically higher indoor densities of the malaria vectors (Anopheles arabiensis and Anopheles funestus) in houses with mud walls compared to plastered or brick walls, open eaves compared to closed eaves and unscreened windows compared to screened windows. Most respondents reported that their houses allowed mosquito entry, at least partially. Participants were aware that house structure and environmental characteristics influenced indoor mosquito densities and consequently malaria transmission. They were concerned about living in poorly-constructed houses with gaps on eaves, walls, windows and doors but were constrained by low income. CONCLUSION: In rural south-eastern Tanzania, significant proportions of people still live in houses with open eaves, unscreened windows and gaps on doors. Though they are fully aware of associated mosquito biting and pathogen transmission risks, they are constrained by low-income levels. The study proposes that community-based house improvement initiatives combined with targeted subsidies could lower the financial barriers, improve access to essential construction materials or designs, and significantly accelerate malaria transmission control in these communities.


Subject(s)
Anopheles/physiology , Disease Transmission, Infectious/prevention & control , Feeding Behavior , Health Knowledge, Attitudes, Practice , Housing , Malaria/prevention & control , Mosquito Vectors/physiology , Adolescent , Adult , Aged , Aged, 80 and over , Animals , Female , Humans , Longitudinal Studies , Malaria/epidemiology , Male , Middle Aged , Rural Population , Tanzania , Young Adult
9.
Wellcome Open Res ; 2: 88, 2017.
Article in English | MEDLINE | ID: mdl-29184918

ABSTRACT

Background: Malaria mosquitoes form mating swarms around sunset, often at the same locations for months or years. Unfortunately, studies of Anopheles swarms are rare in East Africa, the last recorded field observations in Tanzania having been in 1983. Methods: Mosquito swarms were surveyed by trained volunteers between August-2016 and June-2017 in Ulanga district, Tanzania. Identified Anopheles swarms were sampled using sweep nets, and collected mosquitoes killed by refrigeration then identified by sex and taxa. Sub-samples were further identified by PCR, and spermatheca of females examined for mating status. Mosquito ages were estimated by observing female ovarian tracheoles and rotation of male genitalia. GPS locations, types of swarm markers, start/end times of swarming, heights above ground, mosquito counts/swarm, and copulation events were recorded. Results: A total of 216 Anopheles swarms were identified, characterized and mapped, from which 7,142 Anopheles gambiae s.l and 13 Anopheles funestus were sampled. The An. gambiae s.l were 99.6% males and 0.4% females, while the An. funestus were all males. Of all An. gambiae s.l analyzed by PCR, 86.7% were An. arabiensis, while 13.3% returned non-amplified DNA. Mean height (±SD) of swarms was 2.74±0.64m, and median duration was 20 (IQR; 15-25) minutes. Confirmed swarm markers included rice fields (25.5%), burned grounds (17.2%), banana trees (13%), brick piles (8.8%), garbage heaps (7.9%) and ant-hills (7.4%). Visual estimates of swarm sizes by the volunteers was strongly correlated to actual sizes by sweep nets (R=0.94; P=<0.001). All females examined were nulliparous and 95.6% [N=6787] of males had rotated genitalia, indicating sexual maturity. Conclusions: This is the first report of Anopheles swarms in Tanzania in more than three decades. The study demonstrates that the swarms can be identified and characterized by trained community-based volunteers, and highlights potential new interventions, for example targeted aerosol spraying of the swarms to improve malaria control.

10.
PLoS One ; 12(5): e0177807, 2017.
Article in English | MEDLINE | ID: mdl-28542335

ABSTRACT

Malaria is transmitted by many Anopheles species whose proportionate contributions vary across settings. We re-assessed the roles of Anopheles arabiensis and Anopheles funestus, and examined potential benefits of species-specific interventions in an area in south-eastern Tanzania, where malaria transmission persists, four years after mass distribution of long-lasting insecticide-treated nets (LLINs). Monthly mosquito sampling was done in randomly selected households in three villages using CDC light traps and back-pack aspirators, between January-2015 and January-2016, four years after the last mass distribution of LLINs in 2011. Multiplex polymerase chain reaction (PCR) was used to identify members of An. funestus and Anopheles gambiae complexes. Enzyme-linked immunosorbent assay (ELISA) was used to detect Plasmodium sporozoites in mosquito salivary glands, and to identify sources of mosquito blood meals. WHO susceptibility assays were done on wild caught female An. funestus s.l, and physiological ages approximated by examining mosquito ovaries for parity. A total of 20,135 An. arabiensis and 4,759 An. funestus were collected. The An. funestus group consisted of 76.6% An. funestus s.s, 2.9% An. rivulorum, 7.1% An. leesoni, and 13.4% unamplified samples. Of all mosquitoes positive for Plasmodium, 82.6% were An. funestus s.s, 14.0% were An. arabiensis and 3.4% were An. rivulorum. An. funestus and An. arabiensis contributed 86.21% and 13.79% respectively, of annual entomological inoculation rate (EIR). An. arabiensis fed on humans (73.4%), cattle (22.0%), dogs (3.1%) and chicken (1.5%), but An. funestus fed exclusively on humans. The An. funestus populations were 100% susceptible to organophosphates, pirimiphos methyl and malathion, but resistant to permethrin (10.5% mortality), deltamethrin (18.7%), lambda-cyhalothrin (18.7%) and DDT (26.2%), and had reduced susceptibility to bendiocarb (95%) and propoxur (90.1%). Parity rate was higher in An. funestus (65.8%) than An. arabiensis (44.1%). Though An. arabiensis is still the most abundant vector species here, the remaining malaria transmission is predominantly mediated by An. funestus, possibly due to high insecticide resistance and high survival probabilities. Interventions that effectively target An. funestus mosquitoes could therefore significantly improve control of persistent malaria transmission in south-eastern Tanzania.


Subject(s)
Anopheles/physiology , Insect Vectors/physiology , Malaria/prevention & control , Malaria/transmission , Mosquito Control , Animals , Endemic Diseases/prevention & control , Female , Insecticides/pharmacology , Malaria/epidemiology , Parity/drug effects , Plasmodium malariae/physiology , Sporozoites/drug effects , Sporozoites/physiology , Survival Analysis , Tanzania/epidemiology
11.
PLoS Negl Trop Dis ; 10(6): e0004759, 2016 06.
Article in English | MEDLINE | ID: mdl-27362709

ABSTRACT

The release of Wolbachia infected mosquitoes is likely to form a key component of disease control strategies in the near future. We investigated the potential of using near-infrared spectroscopy (NIRS) to simultaneously detect and identify two strains of Wolbachia pipientis (wMelPop and wMel) in male and female laboratory-reared Aedes aegypti mosquitoes. Our aim is to find faster, cheaper alternatives for monitoring those releases than the molecular diagnostic techniques that are currently in use. Our findings indicate that NIRS can differentiate females and males infected with wMelPop from uninfected wild type samples with an accuracy of 96% (N = 299) and 87.5% (N = 377), respectively. Similarly, females and males infected with wMel were differentiated from uninfected wild type samples with accuracies of 92% (N = 352) and 89% (N = 444). NIRS could differentiate wMelPop and wMel transinfected females with an accuracy of 96.6% (N = 442) and males with an accuracy of 84.5% (N = 443). This non-destructive technique is faster than the standard polymerase chain reaction diagnostic techniques. After the purchase of a NIRS spectrometer, the technique requires little sample processing and does not consume any reagents.


Subject(s)
Aedes/microbiology , Mosquito Vectors/microbiology , Spectroscopy, Near-Infrared/methods , Wolbachia/classification , Wolbachia/isolation & purification , Animals , Female , Host-Parasite Interactions , Male , Mosquito Control , Regression Analysis , Time Factors , Wolbachia/physiology
12.
Malar J ; 15: 199, 2016 Apr 12.
Article in English | MEDLINE | ID: mdl-27067147

ABSTRACT

BACKGROUND: Fine-scale targeting of interventions is increasingly important where epidemiological disease profiles depict high geographical stratifications. This study verified correlations between household biomass and mosquito house-entry using experimental hut studies, and then demonstrated how geographical foci of mosquito biting risk can be readily identified based on spatial distributions of household occupancies in villages. METHODS: A controlled 4 × 4 Latin square experiment was conducted in rural Tanzania, in which no, one, three or six adult male volunteers slept under intact bed nets, in experimental huts. Mosquitoes entering the huts were caught using exit interception traps on eaves and windows. Separately, monthly mosquito collections were conducted in 96 randomly selected households in three villages using CDC light traps between March-2012 and November-2013. The number of people sleeping in the houses and other household and environmental characteristics were recorded. ArcGIS 10 (ESRI-USA) spatial analyst tool, Gi* Ord Statistic was used to analyse clustering of vector densities and household occupancy. RESULTS: The densities of all mosquito genera increased in huts with one, three or six volunteers, relative to huts with no volunteers, and direct linear correlations within tested ranges (P < 0.001). Significant geographical clustering of indoor densities of malaria vectors, Anopheles arabiensis and Anopheles funestus, but not Culex or Mansonia species occurred in locations where households with highest occupancy were also most clustered (Gi* P ≤ 0.05, and Gi* Z-score ≥ 1.96). CONCLUSIONS: This study demonstrates strong correlations between household occupancy and malaria vector densities in households, but also spatial correlations of these variables within and between villages in rural southeastern Tanzania. Fine-scale clustering of indoor densities of vectors within and between villages occurs in locations where houses with highest occupancy are also clustered. The study indicates potential for using household census data to preliminarily identify households with greatest Anopheles mosquito biting risk.


Subject(s)
Anopheles/physiology , Culex/physiology , Insect Bites and Stings/epidemiology , Malaria/prevention & control , Mosquito Control/methods , Adolescent , Adult , Animals , Family Characteristics , Female , Healthy Volunteers , Humans , Longitudinal Studies , Male , Rural Population , Tanzania , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...