Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 12(1): 465, 2021 Jan 19.
Article in English | MEDLINE | ID: mdl-33469009

ABSTRACT

Electron and hole spins in organic light-emitting diodes constitute prototypical two-level systems for the exploration of the ultrastrong-drive regime of light-matter interactions. Floquet solutions to the time-dependent Hamiltonian of pairs of electron and hole spins reveal that, under non-perturbative resonant drive, when spin-Rabi frequencies become comparable to the Larmor frequencies, hybrid light-matter states emerge that enable dipole-forbidden multi-quantum transitions at integer and fractional g-factors. To probe these phenomena experimentally, we develop an electrically detected magnetic-resonance experiment supporting oscillating driving fields comparable in amplitude to the static field defining the Zeeman splitting; and an organic semiconductor characterized by minimal local hyperfine fields allowing the non-perturbative light-matter interactions to be resolved. The experimental confirmation of the predicted Floquet states under strong-drive conditions demonstrates the presence of hybrid light-matter spin excitations at room temperature. These dressed states are insensitive to power broadening, display Bloch-Siegert-like shifts, and are suggestive of long spin coherence times, implying potential applicability for quantum sensing.

2.
Sci Rep ; 5: 15402, 2015 Oct 26.
Article in English | MEDLINE | ID: mdl-26497777

ABSTRACT

We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10-100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems.

3.
Phys Rev Lett ; 110(8): 086805, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23473187

ABSTRACT

The Anderson impurity problem is considered for a graphene bilayer subject to a gap-opening bias. In-gap localized states are produced even when the impurity level overlaps with the continuum of band electrons. The effect depends strongly on the polarity of the applied bias as long as hybridization with the impurity occurs within a single layer. For an impurity level inside the conduction band a positive bias creates the new localized in-gap state. A negative bias does not produce the same result and leads to a simple broadening of the impurity level. The implications for transport are discussed including a possibility of the gate-controlled Kondo effect.

4.
Phys Rev Lett ; 106(25): 256803, 2011 Jun 24.
Article in English | MEDLINE | ID: mdl-21770661

ABSTRACT

Localization properties of random-mass Dirac fermions for a realization of mass disorder, commonly referred to as the Cho-Fisher model, are studied on the D-class chiral network. We show that a simple renormalization group (RG) description captures accurately a rich phase diagram: thermal metal and two insulators with quantized σ(xy), as well as transitions (including critical exponents) between them. Our main finding is that, even with small transmission of nodes, the RG block exhibits a sizable portion of perfect resonances. Delocalization occurs by proliferation of these resonances to larger scales. Evolution of the thermal conductance distribution towards a metallic fixed point is synchronized with evolution of signs of transmission coefficients, so that delocalization is accompanied with sign percolation.

5.
Phys Rev Lett ; 106(19): 197003, 2011 May 13.
Article in English | MEDLINE | ID: mdl-21668193

ABSTRACT

Fermi-edge absorption theory predicting the spectrum A(ω) ∝ ω(-2δ(0)/π+δ(0)92)/π2) relies on the assumption that scattering phase δ(0) is frequency independent. The dependence of δ(0) on ω becomes crucial near the resonant condition, where the phase changes abruptly by π. In this limit, because of the finite time spent by electron on a resonant level, the scattering is dynamic. We incorporate the finite time delay into the theory, solve the Dyson equation with a modified kernel, and find that, near the resonance, A(ω) behaves as ω(-3/4)|lnω|. Scattering off the core hole becomes resonant in 1D and 2D in the presence of an empty subband above the Fermi level; then a deep hole splits off a level from the bottom of this subband. Fermi-edge absorption in the regime when resonant level transforms into a Kondo peak is discussed.

6.
Phys Rev Lett ; 103(6): 066801, 2009 Aug 07.
Article in English | MEDLINE | ID: mdl-19792593

ABSTRACT

By restricting the motion of a high-mobility 2D electron gas to a network of channels with smooth confinement, we were able to trace, both classically and quantum mechanically, the interplay of backscattering, and of the bending action of a weak magnetic field. Backscattering limits the mobility, while bending initiates quantization of the Hall conductivity. We demonstrate that, in restricted geometry, electron motion reduces to two Chalker-Coddington networks, with opposite directions of propagation along the links, which are weakly coupled by disorder. The interplay of backscattering and bending results in the quantum Hall transition in a nonquantizing magnetic field, which decreases with increasing mobility. This is in accord with the scenario of floating up delocalized states.

7.
Phys Rev Lett ; 101(25): 256401, 2008 Dec 19.
Article in English | MEDLINE | ID: mdl-19113728

ABSTRACT

We study theoretically the plasmon scattering at the intersection of two metallic carbon nanotubes. We demonstrate that, for a small angle of crossing theta<<1, the transmission coefficient is an oscillatory function of lambda/theta, where lambda is the interaction parameter of the Luttinger liquid in an individual nanotube. We calculate the tunnel density of states nu(omega,x) as a function of energy omega and distance x from the intersection. In contrast with a single nanotube, we find that, in the geometry of crossed nanotubes, conventional "rapid" oscillations in nu(omega,x) due to the plasmon scattering acquire an aperiodic "slow-breathing" envelope which has lambda/theta nodes.

SELECTION OF CITATIONS
SEARCH DETAIL
...